ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/180373.

Layer 5 Pyramidal Neuron (Shai et al., 2015)

 Download zip file 
Help downloading and running models
Accession:180373
This work contains a NEURON model for a layer 5 pyramidal neuron (based on Hay et al., 2011) with distributed groups of synapses across the basal and tuft dendrites. The results of that simulation are used to fit a phenomenological model, which is also included in this file.
Reference:
1 . Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11:e1004090 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Dendritic Action Potentials; Active Dendrites;
Implementer(s):
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Glutamate;
/
ShaiEtAl2015
simulationcode
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
glutamate.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
AccessoryFunctions.hoc
DefineSections.hoc
distSynsCluster.hoc
distSynsCluster2.hoc
distSynsUniform.hoc
distSynsUniform2.hoc
distSynsUniformAlpha.hoc
Fig3A.hoc
neuron203.os
O_vd_C.dat
O_vs_C.dat
Run.hoc
varycolor.m
                            
objref synList

obfunc distSynsUniform() { local totalL, totalSyns localobj lengthList, cumLList, tobj, toAdd, randomNum, r2, randomVec, distList
	// INPUTS
	// totalSyns = $1
	// section list for synapses to be distributed over= $2
	// gmax = $3, this is the max conductance of the nmda current
	// ntar = $4, this defines the conductance of the ampa current
	//            with ampa current = gmax/ntar

   
   lengthList = new Vector(0) // a vector of branch lengths in order
   totalSyns = $1	 

   totalL = 0
   forsec $o2 {
       totalL += L
       lengthList.append(L)
    }

cumLList = new Vector(lengthList.size()) // a vector of the cummulative 
											// branch length, in order

for i=0,lengthList.size()-1{
    cumLList.x[i]=lengthList.sum(0,i)
}

synList = new List()

randomNum = new Random()
randomNum.uniform(0,totalL)
randomVec = new Vector(totalSyns)
randomNum.ACG(seed)
randomVec.setrand(randomNum)
randomVec.sort()

toAdd = new Vector(0)

for i=0, lengthList.size()-1{
    howManyToAdd=0
    while (randomVec.x[0]<cumLList.x[i]){
    	  howManyToAdd += 1
	  randomVec.remove(0)
	  if (randomVec.size()<1){randomVec.append(99999999999999)}
    }
  toAdd.append(howManyToAdd)
}

ind = 0
distList = new Vector(0)
access L5PC.soma
distance()
r2 = new Random()
forsec $o2 {
       for i=1,toAdd.x[ind]{
       	   where = r2.uniform(0,1)
	   distList.append(distance(where))
	   //tobj = new Exp2Syn(where)
	   tobj = new AlphaSynapse(where)
	   synList.append(tobj)
       }
       ind+=1
}


for i=0,synList.count()-1{
    synList.object(i).tau = 5
    synList.object(i).e = -70 //bernander, douglas, martin, koch 1991 paper has this as 1.5ms
    synList.object(i).gmax = 0.01  //bernander, douglas, martin, koch 1991 paper has this as 0 V
	//synList.object(i).gmax = $3
	//synList.object(i).ntar = $4
	//synList.object(i).del = 500
	//synList.object(i).Tspike = 20
	//synList.object(i).Nspike = 1
	
}


	return synList

} //end procedure


Loading data, please wait...