CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)

 Download zip file 
Help downloading and running models
Accession:184054
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
Reference:
1 . Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I L high threshold; I K; Ca pump; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Synaptic Integration; Calcium dynamics; Conductance distributions;
Implementer(s): Cembrowski, Mark S [cembrowskim at janelia.hhmi.org]; Hsu, Ching-Lung [hsuc at janelia.hhmi.org];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I L high threshold; I K; I Sodium; Ca pump; Glutamate;
/
fullMorphCaLTP8
fullMorphCaLTP8
calH.mod
cdp.mod
id.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
spgen2.mod
analyseTBSCC.hoc
channelParameters.hoc
displayPanels.hoc
doTBSStimCC.hoc
getVoltageIntegral.hoc
init.hoc
initializationAndRun.hoc
morphology_ri06.nrn *
naceaxon.nrn *
plotTBSCC.hoc
preallocate.hoc
resetNSeg.hoc *
runTBSCC.hoc
seclists.hoc
start.hoc
                            
// The below function is designed to return a voltage integral, with the offset
// removed, in accordance with Yujin's analysis.  
// NOTE: requires a fixed time step.
// INPUT 1: vector of voltages
// INPUT 2: step size, in msec, used in experiments
// INPUT 3: time that indicates the beginning of the integral
// INPUT 4: time that indicates the end of the integral
// OUTPUT: the integral of the voltage response

objref theVec // copy of voltage trace
objref theVecSub // subset of voltage trace used for integral
objref theVecInt // the integral of voltage neighbourhood

func getVoltageIntegral() {local step

	// copy the voltage trace to theVec
	theVec = new Vector()
	theVec.copy($o1)
	
	// get step size
	step = $2
	
	// subtract baseline
	initTime = $3 // index to calculate baseline voltage
	baseVolt = theVec.x[initTime/step-1]
	baseVolt = baseVolt*-1
	theVec.add(baseVolt)
	
	// extract the neighbourhood of interest
	termTime = $4 // terminal index
	theVecSub = new Vector()
	theVecSub.copy(theVec,initTime/step,termTime/step)
		
	// integrate the neighbourhood of interest
	theVecInt = new Vector()
	theVecInt.integral(theVecSub,step)
	
	// return full integral, found in last entry of integrated vector
	theInt = theVecInt.x[theVecInt.size()-1]
	return theInt
}


//foo = getVoltageIntegral(somaVolt,dt,ccDel,ccDel+ccDur+100)

Loading data, please wait...