ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/184274.

Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759

 Download zip file 
Help downloading and running models
Accession:184274
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
Reference:
1 . Allen Institute (2015) Documentation Allen Cell Types Database
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex layer 6a interneuron;
Channel(s): I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Parameter Fitting; Calcium dynamics; Vision;
Implementer(s):
Search NeuronDB for information about:  I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I A, slow;
Files displayed below are from the implementation
/
472440759
modfiles
Ca_HVA.mod *
Ca_LVA.mod *
CaDynamics.mod *
Ih.mod *
Im.mod *
Im_v2.mod *
K_P.mod *
K_T.mod *
Kd.mod *
Kv2like.mod *
Kv3_1.mod *
Nap.mod *
NaTa.mod *
NaTs.mod *
NaV.mod *
SK.mod *
                            
: SK-type calcium-activated potassium current
: Reference : Kohler et al. 1996

NEURON {
       SUFFIX SK
       USEION k READ ek WRITE ik
       USEION ca READ cai
       RANGE gbar, g, ik
}

UNITS {
      (mV) = (millivolt)
      (mA) = (milliamp)
      (mM) = (milli/liter)
}

PARAMETER {
          v            (mV)
          gbar = .000001 (mho/cm2)
          zTau = 1              (ms)
          ek           (mV)
          cai          (mM)
}

ASSIGNED {
         zInf
         ik            (mA/cm2)
         g	       (S/cm2)
}

STATE {
      z   FROM 0 TO 1
}

BREAKPOINT {
           SOLVE states METHOD cnexp
           g  = gbar * z
           ik   =  g * (v - ek)
}

DERIVATIVE states {
        rates(cai)
        z' = (zInf - z) / zTau
}

PROCEDURE rates(ca(mM)) {
          if(ca < 1e-7){
	              ca = ca + 1e-07
          }
          zInf = 1/(1 + (0.00043 / ca)^4.8)
}

INITIAL {
        rates(cai)
        z = zInf
}

Loading data, please wait...