ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/184341.

Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773

 Download zip file 
Help downloading and running models
Accession:184341
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
Reference:
1 . Allen Institute (2015) Documentation Allen Cell Types Database
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Parameter Fitting; Calcium dynamics; Vision;
Implementer(s):
Search NeuronDB for information about:  Neocortex V1 L5B pyramidal pyramidal tract GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca;
Files displayed below are from the implementation
/
473871773
modfiles
Ca_HVA.mod *
Ca_LVA.mod *
CaDynamics.mod *
Ih.mod *
Im.mod *
Im_v2.mod *
K_P.mod *
K_T.mod *
Kd.mod *
Kv2like.mod *
Kv3_1.mod *
Nap.mod *
NaTa.mod *
NaTs.mod *
NaV.mod *
SK.mod *
                            
: Kv2-like channel
: Adapted from model implemented in Keren et al. 2005
: Adjusted parameters to be similar to guangxitoxin-sensitive current in mouse CA1 pyramids from Liu and Bean 2014


NEURON	{
	SUFFIX Kv2like
	USEION k READ ek WRITE ik
	RANGE gbar, g, ik
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ek	(mV)
	ik	(mA/cm2)
	g	(S/cm2)
	celsius (degC)
	mInf
	mAlpha
	mBeta
	mTau
	hInf
	h1Tau
	h2Tau
}

STATE	{
	m
	h1
	h2
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	g = gbar * m * m * (0.5 * h1 + 0.5 * h2)
	ik = g * (v - ek)
}

DERIVATIVE states	{
	rates()
	m' = (mInf - m) / mTau
	h1' = (hInf - h1) / h1Tau
	h2' = (hInf - h2) / h2Tau
}

INITIAL{
	rates()
	m = mInf
	h1 = hInf
	h2 = hInf
}

PROCEDURE rates() {
  LOCAL qt
  qt = 2.3^((celsius-21)/10)
	UNITSOFF
		mAlpha = 0.12 * vtrap( -(v - 43), 11.0)
		mBeta = 0.02 * exp(-(v + 1.27) / 120)
		mInf = mAlpha / (mAlpha + mBeta)
		mTau = 2.5 * (1 / (qt * (mAlpha + mBeta)))

		hInf =  1/(1 + exp((v + 58) / 11))
		h1Tau = (360 + (1010 + 23.7 * (v + 54)) * exp(-((v + 75) / 48)^2)) / qt
		h2Tau = (2350 + 1380 * exp(-0.011 * v) - 210 * exp(-0.03 * v)) / qt
	UNITSON
}

FUNCTION vtrap(x, y) { : Traps for 0 in denominator of rate equations
	UNITSOFF
	if (fabs(x / y) < 1e-6) {
		vtrap = y * (1 - x / y / 2)
	} else {
		vtrap = x / (exp(x / y) - 1)
	}
	UNITSON
}

Loading data, please wait...