Modeling dentate granule cells heterosynaptic plasticity using STDP-BCM rule (Jedlicka et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:185350
... Here we study how key components of learning mechanisms in the brain, namely spike timing-dependent plasticity and metaplasticity, interact with spontaneous activity in the input pathways of the neuron. Using biologically realistic simulations we show that ongoing background activity is a key determinant of the degree of long-term potentiation and long-term depression of synaptic transmission between nerve cells in the hippocampus of freely moving animals. This work helps better understand the computational rules which drive synaptic plasticity in vivo. ...
Reference:
1 . Jedlicka P, Benuskova L, Abraham WC (2015) A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo. PLoS Comput Biol 11:e1004588 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): STDP; Homeostasis;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; AMPA; Glutamate;
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,0.9,3.3)
scene_vector_[4] = save_window_
{save_window_.view(0, 0.9, 50000, 2.4, 1540, 331, 471.6, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("alpha_scount_BCMthreshold", 3, 1, 0.130153, 0.949303, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,-80,50)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 50000, 130, 898, 328, 426.6, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addvar("cell.v( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,50000,0.00018,0.00104)
scene_vector_[3] = save_window_
{save_window_.view(0, 0.00018, 50000, 0.00086, 897, 691, 428.4, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("syncon.weight[1]", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("RunControl", 0)
v_init = -65
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 66400.9
xvalue("t","t", 2 )
tstop = 50000
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 108.29
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(589,474)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...