ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/185513.

Cerebellar nuclear neuron (Sudhakar et al., 2015)

 Download zip file 
Help downloading and running models
Accession:185513
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
Reference:
1 . Sudhakar SK, Torben-Nielsen B, De Schutter E (2015) Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses. PLoS Comput Biol 11:e1004641 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I Na,p; I T low threshold; I h; I Sodium;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Rate-coding model neurons; Rebound firing;
Implementer(s):
Search NeuronDB for information about:  NMDA; Glutamate; Gaba; I Na,p; I T low threshold; I h; I Sodium; Gaba; Glutamate;
/
SudhakarEtAl2015
readme.html
CaConc.mod *
CaHVA.mod *
CaL.mod
CalConc.mod *
CaLVA.mod *
DCNsyn.mod *
DCNsynGABA.mod
DCNsynNMDA.mod *
fKdr.mod *
GammaStim.mod *
h.mod *
Ifluct8.mod *
NaF.mod *
NaP.mod *
pasDCN.mod *
SK.mod *
sKdr.mod *
TNC.mod
vecevent.mod *
cellids.dat
cellids_n.dat
datasp_ex1.dat
datasp1.dat
DCN_init_model1.hoc
DCN_init_model2.hoc
DCN_init_model2_highgain.hoc
DCN_init_model2_lowgain.hoc
DCN_init_model2_medgain.hoc
DCN_init_model3.hoc
DCN_mechs1.hoc *
DCN_mechs2.hoc
DCN_morph.hoc *
DCN_params.hoc
l_ex1.dat
l1.dat
model1_params.hoc
model2_params.hoc
model2_params_highgain.hoc
model2_params_lowgain.hoc
model2_params_medgain.hoc
model3_params.hoc
mosinit.hoc
pausebeg.dat
pausebeg_n.dat
screenshot.png
                            
TITLE Small conductance calcium dependent potassium current (SK) of deep cerebellar nucleus (DCN) neuron
COMMENT
    This channel's conductance is affected by the calcium concentration which
    has been accumulated through the CaHVA channel and kept track of by CaConc.mod.
    Calcium entry through the CaLVA channel is kept track of by CalConc.mod
    and doesn't affect the SK channel.
    Translated from GENESIS by Johannes Luthman and Volker Steuber. 
ENDCOMMENT
 
NEURON {
	SUFFIX SK
	USEION ca READ cai VALENCE 2
	USEION k READ ek WRITE ik
	RANGE gbar, z, ik
	GLOBAL qdeltat
}
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}
 
PARAMETER { 
    qdeltat = 1
    gbar = 1e-5 (siemens/cm2)
} 

ASSIGNED {
	v (mV)
	ek (mV)
	ik (mA/cm2) 
	cai (mM)
	zinf 
    tauz (ms) 
} 
 
STATE {
	z : calcium-dependent activation variable
} 

INITIAL { 
    rate(cai)
    z = zinf 
} 
 
BREAKPOINT { 
    SOLVE states METHOD cnexp 
	ik = gbar * z * (v - ek)
} 

DERIVATIVE states { 
	rate(cai) 
	z' = (zinf - z) / tauz
} 

PROCEDURE rate(cai(mM)) {
	TABLE zinf, tauz FROM 0 TO 0.01 WITH 300
    zinf = cai*cai*cai*cai / (cai*cai*cai*cai + 8.1e-15) : 8.1e-15 is the result of (3e-4)^4

    if (cai < 0.005) {
        tauz = 1 - (186.67 * cai)
    } else {
        tauz = 0.0667
    }
    tauz = tauz / qdeltat
} 

Loading data, please wait...