ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/185858.

Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)

 Download zip file 
Help downloading and running models
Accession:185858
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
Reference:
1 . Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316:344-66 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Molecular Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex layer 2-3 interneuron; Neocortex layer 5 interneuron; Neocortex layer 6a interneuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump;
Gap Junctions:
Receptor(s): mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Ion Channel Kinetics; Oscillations; Spatio-temporal Activity Patterns; Signaling pathways; Working memory; Attractor Neural Network; Calcium dynamics; Laminar Connectivity; G-protein coupled; Rebound firing; Brain Rhythms; Dendritic Bistability; Reaction-diffusion; Beta oscillations; Persistent activity; Multiscale;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; McDougal, Robert [robert.mcdougal at yale.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump; Gaba; Glutamate;
/
CaHDemo
readme.html
cagk.mod
cal.mod *
calts.mod *
can.mod *
cat.mod *
gabab.mod *
IC.mod *
icalts.mod *
Ih.mod
ihlts.mod *
IKM.mod *
kap.mod
kcalts.mod *
kdmc.mod
kdr.mod
kdrbwb.mod
km.mod *
mglur.mod *
misc.mod
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod
nafbwb.mod
nax.mod
vecst.mod *
aux_fun.inc *
conf.py
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
ghk.inc *
grvec.hoc
init.hoc
labels.hoc
labels.py *
local.hoc *
misc.h
mpisim.py
netcfg.cfg
nqs.hoc
nqs.py
nrnoc.hoc *
onepyr.cfg
onepyr.py
pyinit.py *
python.hoc *
pywrap.hoc *
screenshot.png
screenshot1.png
simctrl.hoc *
simdat.py
syncode.hoc *
xgetargs.hoc *
                            
TITLE K-D channel with activation for motor cortex
: K-D current with activation, for motor cortex pyramidal neurons, per Miller et al. (2008)
: Based on K-A current K-A current for Mitral Cells from Wang et al (1996), by M.Migliore Jan. 2002
: 2011-02-25 Ben Suter, first version, using MM's kamt.mod as a starting template
: 2011-09-18 Ben Suter, set default parameter values to those found from MRF optimization for BS0284 model
:
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
: Copyright 2011, Benjamin Suter
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


NEURON {
    THREADSAFE
    SUFFIX kdmc
    USEION k READ ek WRITE ik
    RANGE  gbar, minf, mtau, hinf, htau
    GLOBAL taumin
}

PARAMETER {
    gbar    = 0.002     (mho/cm2)

    celsius
    ek                  (mV)   : must be explicitly def. in hoc
    v                   (mV)

    : activation
    vhalfmt = -25       : original -20   : rough estimate from Miller et al (2008) Fig. 3D I-V curve
    km      = 14        : manual fit to match this I-V curve

    : inactivation
    : NOTE: These values are still quite arbitrary (but get about the correct htau at -40 and -30 mV
    vhalfh  = -5        : original -55
    zetah   = 0.02      : original 0.05
    gmh     = 0.2       : original 0.7
    a0h     = 0.00058   : original 0.00055
    taumin	= 0.1	(ms)		: minimal value of time constant

    vhalfht = -100      : original -88   : measured by Storm (1988)
    kh      = 8         : manual fit to match inactivation curve in Storm (1988) and Johnston+Wu textbook

    q10     = 3
}


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
    (pS) = (picosiemens)
    (um) = (micron)
}

ASSIGNED {
    ik      (mA/cm2)
    minf        mtau (ms)
    hinf        htau (ms)
}


STATE { m h }

BREAKPOINT {
    SOLVE states METHOD cnexp
    ik  = gbar*m*h*(v - ek)
}

INITIAL {
    trates(v)
    m   = minf
    h   = hinf
}

DERIVATIVE states {
    trates(v)
    m'  = (minf-m)/mtau
    h'  = (hinf-h)/htau
}

PROCEDURE trates(v) {
    LOCAL qt
    qt   = q10^((celsius-34)/10)

    minf = 1/(1 + exp(-(v-vhalfmt)/km))
    mtau = 1

    hinf = 1/(1 + exp((v-vhalfht)/kh))
    htau = exp(zetah*gmh*(v-vhalfh)) / (qt*a0h*(1 + exp(zetah*(v-vhalfh))))
    if(htau < taumin) { htau = taumin } 	: min value of time constant
}

Loading data, please wait...