ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206337.

Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_2_OLD
attsefd2.w *
attsefd2.ws *
attvatts.w *
attvatts.ws *
ea1dea1d.w *
ea1dea1d.ws *
ea1dea2c.w *
ea1dea2c.ws *
ea1dea2d.w *
ea1dea2d.ws *
ea1dia1d.w *
ea1dia1d.ws *
ea1uea1u.w *
ea1uea1u.ws *
ea1uea2c.w *
ea1uea2c.ws *
ea1uea2u.w *
ea1uea2u.ws *
ea1uia1u.w *
ea1uia1u.ws *
ea2cea2c.w *
ea2cea2c.ws *
ea2cestg.w *
ea2cestg.ws *
ea2cia2c.w *
ea2cia2c.ws *
ea2dea1d.w *
ea2dea2d.w *
ea2dea2d.ws *
ea2destg.w *
ea2destg.ws *
ea2dia2d.w *
ea2dia2d.ws *
ea2uea1u.w *
ea2uea2u.w *
ea2uea2u.ws *
ea2uestg.w *
ea2uestg.ws *
ea2uia2u.w *
ea2uia2u.ws *
ectlectl.w
ectlectl.ws *
ectlictl.w
ectlictl.ws *
efd1efd1.w *
efd1efd1.ws *
efd1efd2.w *
efd1efd2.ws *
efd1exfr.w *
efd1exfr.ws *
efd1ia1d.w
efd1ia1d.ws *
efd1ia1u.w
efd1ia1u.ws *
efd1ia2c.w
efd1ia2c.ws *
efd1ia2d.w
efd1ia2d.ws *
efd1ia2u.w
efd1ia2u.ws *
efd1ifd1.w *
efd1ifd1.ws *
efd1infs.w *
efd1infs.ws *
efd1istg.w *
efd1istg.ws *
efd2ea2c.w *
efd2ea2c.ws *
efd2ea2d.w *
efd2ea2d.ws *
efd2ea2u.w *
efd2ea2u.ws *
efd2efd1.w *
efd2efd1.ws *
efd2efd2.w *
efd2efd2.ws *
efd2estg.w *
efd2ifd2.w *
ena1ea1d.w *
ena1ea1d.ws *
ena1ea1u.w *
ena1ea1u.ws *
enpfexfs.w *
enpfexfs.ws *
enstestg.w *
enstestg.ws *
estgea2c.w *
estgea2c.ws *
estgea2d.w *
estgea2d.ws *
estgea2u.w *
estgea2u.ws *
estgestg.w *
estgestg.ws *
estgexfs.w *
estgexfs.ws *
estgistg.w *
estgistg.ws *
exfrexfr.w *
exfrexfr.ws *
exfrifd1.w *
exfrifd1.ws *
exfrifd2.w *
exfrifd2.ws *
exfrinfr.w *
exfrinfr.ws *
exfsefd2.w *
exfsefd2.ws *
exfsexfr.w *
exfsexfr.ws *
exfsexfs.w *
exfsexfs.ws *
exfsifd1.w *
exfsifd1.ws *
exfsinfs.w *
exfsinfs.ws *
ia1dea1d.w *
ia1dea1d.ws *
ia1uea1u.w *
ia1uea1u.ws *
ia2cea2c.w *
ia2cea2c.ws *
ia2dea2d.w *
ia2dea2d.ws *
ia2uea2u.w *
ictlectl.w
ictlictl.w
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1d.ws *
mgnsea1u.w *
mgnsea1u.ws *
weightslist.txt *
                            
% Mon Aug  3 15:42:52 2015

% Input layer: (1, 81)
% Output layer: (1, 81)
% Fanout size: (1, 3)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ea1d, ea2d)  {
  From:  (1, 1)  {
    ([ 1,81]  0.043734)     ([ 1, 1]  0.096930)     |              | 
  }
  From:  (1, 2)  {
    ([ 1, 1]  0.041359)     ([ 1, 2]  0.102093)     |              | 
  }
  From:  (1, 3)  {
    ([ 1, 2]  0.052564)     ([ 1, 3]  0.105676)     |              | 
  }
  From:  (1, 4)  {
    ([ 1, 3]  0.058911)     ([ 1, 4]  0.095904)     |              | 
  }
  From:  (1, 5)  {
    ([ 1, 4]  0.054590)     ([ 1, 5]  0.103358)     |              | 
  }
  From:  (1, 6)  {
    ([ 1, 5]  0.041907)     ([ 1, 6]  0.109200)     |              | 
  }
  From:  (1, 7)  {
    ([ 1, 6]  0.052821)     ([ 1, 7]  0.105815)     |              | 
  }
  From:  (1, 8)  {
    ([ 1, 7]  0.055289)     ([ 1, 8]  0.109790)     |              | 
  }
  From:  (1, 9)  {
    ([ 1, 8]  0.050518)     ([ 1, 9]  0.100351)     |              | 
  }
  From:  (1, 10)  {
    ([ 1, 9]  0.055016)     ([ 1,10]  0.101964)     |              | 
  }
  From:  (1, 11)  {
    ([ 1,10]  0.049280)     ([ 1,11]  0.106434)     |              | 
  }
  From:  (1, 12)  {
    ([ 1,11]  0.048277)     ([ 1,12]  0.094787)     |              | 
  }
  From:  (1, 13)  {
    ([ 1,12]  0.042432)     ([ 1,13]  0.096931)     |              | 
  }
  From:  (1, 14)  {
    ([ 1,13]  0.051247)     ([ 1,14]  0.106799)     |              | 
  }
  From:  (1, 15)  {
    ([ 1,14]  0.056583)     ([ 1,15]  0.100085)     |              | 
  }
  From:  (1, 16)  {
    ([ 1,15]  0.051606)     ([ 1,16]  0.099526)     |              | 
  }
  From:  (1, 17)  {
    ([ 1,16]  0.041537)     ([ 1,17]  0.098982)     |              | 
  }
  From:  (1, 18)  {
    ([ 1,17]  0.052177)     ([ 1,18]  0.101791)     |              | 
  }
  From:  (1, 19)  {
    ([ 1,18]  0.042816)     ([ 1,19]  0.109865)     |              | 
  }
  From:  (1, 20)  {
    ([ 1,19]  0.053455)     ([ 1,20]  0.092426)     |              | 
  }
  From:  (1, 21)  {
    ([ 1,20]  0.055340)     ([ 1,21]  0.095791)     |              | 
  }
  From:  (1, 22)  {
    ([ 1,21]  0.051980)     ([ 1,22]  0.093213)     |              | 
  }
  From:  (1, 23)  {
    ([ 1,22]  0.051867)     ([ 1,23]  0.105501)     |              | 
  }
  From:  (1, 24)  {
    ([ 1,23]  0.041310)     ([ 1,24]  0.109600)     |              | 
  }
  From:  (1, 25)  {
    ([ 1,24]  0.051656)     ([ 1,25]  0.101914)     |              | 
  }
  From:  (1, 26)  {
    ([ 1,25]  0.055404)     ([ 1,26]  0.094405)     |              | 
  }
  From:  (1, 27)  {
    ([ 1,26]  0.045739)     ([ 1,27]  0.091526)     |              | 
  }
  From:  (1, 28)  {
    ([ 1,27]  0.050415)     ([ 1,28]  0.101535)     |              | 
  }
  From:  (1, 29)  {
    ([ 1,28]  0.047664)     ([ 1,29]  0.109389)     |              | 
  }
  From:  (1, 30)  {
    ([ 1,29]  0.041488)     ([ 1,30]  0.093749)     |              | 
  }
  From:  (1, 31)  {
    ([ 1,30]  0.043794)     ([ 1,31]  0.104791)     |              | 
  }
  From:  (1, 32)  {
    ([ 1,31]  0.046623)     ([ 1,32]  0.102155)     |              | 
  }
  From:  (1, 33)  {
    ([ 1,32]  0.047710)     ([ 1,33]  0.092102)     |              | 
  }
  From:  (1, 34)  {
    ([ 1,33]  0.056896)     ([ 1,34]  0.108772)     |              | 
  }
  From:  (1, 35)  {
    ([ 1,34]  0.054301)     ([ 1,35]  0.093569)     |              | 
  }
  From:  (1, 36)  {
    ([ 1,35]  0.057387)     ([ 1,36]  0.107318)     |              | 
  }
  From:  (1, 37)  {
    ([ 1,36]  0.057746)     ([ 1,37]  0.108715)     |              | 
  }
  From:  (1, 38)  {
    ([ 1,37]  0.047475)     ([ 1,38]  0.103716)     |              | 
  }
  From:  (1, 39)  {
    ([ 1,38]  0.057667)     ([ 1,39]  0.090224)     |              | 
  }
  From:  (1, 40)  {
    ([ 1,39]  0.046926)     ([ 1,40]  0.100755)     |              | 
  }
  From:  (1, 41)  {
    ([ 1,40]  0.047473)     ([ 1,41]  0.092734)     |              | 
  }
  From:  (1, 42)  {
    ([ 1,41]  0.058637)     ([ 1,42]  0.100185)     |              | 
  }
  From:  (1, 43)  {
    ([ 1,42]  0.055628)     ([ 1,43]  0.103671)     |              | 
  }
  From:  (1, 44)  {
    ([ 1,43]  0.058460)     ([ 1,44]  0.105587)     |              | 
  }
  From:  (1, 45)  {
    ([ 1,44]  0.053865)     ([ 1,45]  0.099375)     |              | 
  }
  From:  (1, 46)  {
    ([ 1,45]  0.044189)     ([ 1,46]  0.092275)     |              | 
  }
  From:  (1, 47)  {
    ([ 1,46]  0.043317)     ([ 1,47]  0.090679)     |              | 
  }
  From:  (1, 48)  {
    ([ 1,47]  0.048434)     ([ 1,48]  0.108294)     |              | 
  }
  From:  (1, 49)  {
    ([ 1,48]  0.046413)     ([ 1,49]  0.106538)     |              | 
  }
  From:  (1, 50)  {
    ([ 1,49]  0.056792)     ([ 1,50]  0.106640)     |              | 
  }
  From:  (1, 51)  {
    ([ 1,50]  0.045101)     ([ 1,51]  0.099316)     |              | 
  }
  From:  (1, 52)  {
    ([ 1,51]  0.055694)     ([ 1,52]  0.101710)     |              | 
  }
  From:  (1, 53)  {
    ([ 1,52]  0.058667)     ([ 1,53]  0.101035)     |              | 
  }
  From:  (1, 54)  {
    ([ 1,53]  0.041921)     ([ 1,54]  0.107237)     |              | 
  }
  From:  (1, 55)  {
    ([ 1,54]  0.055221)     ([ 1,55]  0.100674)     |              | 
  }
  From:  (1, 56)  {
    ([ 1,55]  0.058807)     ([ 1,56]  0.094264)     |              | 
  }
  From:  (1, 57)  {
    ([ 1,56]  0.040225)     ([ 1,57]  0.096974)     |              | 
  }
  From:  (1, 58)  {
    ([ 1,57]  0.049021)     ([ 1,58]  0.107535)     |              | 
  }
  From:  (1, 59)  {
    ([ 1,58]  0.042336)     ([ 1,59]  0.092461)     |              | 
  }
  From:  (1, 60)  {
    ([ 1,59]  0.053750)     ([ 1,60]  0.097361)     |              | 
  }
  From:  (1, 61)  {
    ([ 1,60]  0.044901)     ([ 1,61]  0.108606)     |              | 
  }
  From:  (1, 62)  {
    ([ 1,61]  0.059738)     ([ 1,62]  0.108354)     |              | 
  }
  From:  (1, 63)  {
    ([ 1,62]  0.046073)     ([ 1,63]  0.100389)     |              | 
  }
  From:  (1, 64)  {
    ([ 1,63]  0.053653)     ([ 1,64]  0.092000)     |              | 
  }
  From:  (1, 65)  {
    ([ 1,64]  0.055265)     ([ 1,65]  0.098878)     |              | 
  }
  From:  (1, 66)  {
    ([ 1,65]  0.052368)     ([ 1,66]  0.096251)     |              | 
  }
  From:  (1, 67)  {
    ([ 1,66]  0.043454)     ([ 1,67]  0.109619)     |              | 
  }
  From:  (1, 68)  {
    ([ 1,67]  0.044531)     ([ 1,68]  0.093234)     |              | 
  }
  From:  (1, 69)  {
    ([ 1,68]  0.050857)     ([ 1,69]  0.103225)     |              | 
  }
  From:  (1, 70)  {
    ([ 1,69]  0.045733)     ([ 1,70]  0.109841)     |              | 
  }
  From:  (1, 71)  {
    ([ 1,70]  0.044727)     ([ 1,71]  0.102281)     |              | 
  }
  From:  (1, 72)  {
    ([ 1,71]  0.053165)     ([ 1,72]  0.108019)     |              | 
  }
  From:  (1, 73)  {
    ([ 1,72]  0.051151)     ([ 1,73]  0.097870)     |              | 
  }
  From:  (1, 74)  {
    ([ 1,73]  0.044027)     ([ 1,74]  0.094222)     |              | 
  }
  From:  (1, 75)  {
    ([ 1,74]  0.049643)     ([ 1,75]  0.100584)     |              | 
  }
  From:  (1, 76)  {
    ([ 1,75]  0.043525)     ([ 1,76]  0.102700)     |              | 
  }
  From:  (1, 77)  {
    ([ 1,76]  0.057735)     ([ 1,77]  0.096860)     |              | 
  }
  From:  (1, 78)  {
    ([ 1,77]  0.049017)     ([ 1,78]  0.096720)     |              | 
  }
  From:  (1, 79)  {
    ([ 1,78]  0.045932)     ([ 1,79]  0.094612)     |              | 
  }
  From:  (1, 80)  {
    ([ 1,79]  0.049145)     ([ 1,80]  0.102706)     |              | 
  }
  From:  (1, 81)  {
    ([ 1,80]  0.040191)     ([ 1,81]  0.102685)     |              | 
  }
}

Loading data, please wait...