Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_2_OLD
attsefd2.w *
attsefd2.ws *
attvatts.w *
attvatts.ws *
ea1dea1d.w *
ea1dea1d.ws *
ea1dea2c.w *
ea1dea2c.ws *
ea1dea2d.w *
ea1dea2d.ws *
ea1dia1d.w *
ea1dia1d.ws *
ea1uea1u.w *
ea1uea1u.ws *
ea1uea2c.w *
ea1uea2c.ws *
ea1uea2u.w *
ea1uea2u.ws *
ea1uia1u.w *
ea1uia1u.ws *
ea2cea2c.w *
ea2cea2c.ws *
ea2cestg.w *
ea2cestg.ws *
ea2cia2c.w *
ea2cia2c.ws *
ea2dea1d.w *
ea2dea2d.w *
ea2dea2d.ws *
ea2destg.w *
ea2destg.ws *
ea2dia2d.w *
ea2dia2d.ws *
ea2uea1u.w *
ea2uea2u.w *
ea2uea2u.ws *
ea2uestg.w *
ea2uestg.ws *
ea2uia2u.w *
ea2uia2u.ws *
ectlectl.w
ectlectl.ws *
ectlictl.w
ectlictl.ws *
efd1efd1.w *
efd1efd1.ws *
efd1efd2.w *
efd1efd2.ws *
efd1exfr.w *
efd1exfr.ws *
efd1ia1d.w
efd1ia1d.ws *
efd1ia1u.w
efd1ia1u.ws *
efd1ia2c.w
efd1ia2c.ws *
efd1ia2d.w
efd1ia2d.ws *
efd1ia2u.w
efd1ia2u.ws *
efd1ifd1.w *
efd1ifd1.ws *
efd1infs.w *
efd1infs.ws *
efd1istg.w *
efd1istg.ws *
efd2ea2c.w *
efd2ea2c.ws *
efd2ea2d.w *
efd2ea2d.ws *
efd2ea2u.w *
efd2ea2u.ws *
efd2efd1.w *
efd2efd1.ws *
efd2efd2.w *
efd2efd2.ws *
efd2estg.w *
efd2ifd2.w *
ena1ea1d.w *
ena1ea1d.ws *
ena1ea1u.w *
ena1ea1u.ws *
enpfexfs.w *
enpfexfs.ws *
enstestg.w *
enstestg.ws *
estgea2c.w *
estgea2c.ws *
estgea2d.w *
estgea2d.ws *
estgea2u.w *
estgea2u.ws *
estgestg.w *
estgestg.ws *
estgexfs.w *
estgexfs.ws *
estgistg.w *
estgistg.ws *
exfrexfr.w *
exfrexfr.ws *
exfrifd1.w *
exfrifd1.ws *
exfrifd2.w *
exfrifd2.ws *
exfrinfr.w *
exfrinfr.ws *
exfsefd2.w *
exfsefd2.ws *
exfsexfr.w *
exfsexfr.ws *
exfsexfs.w *
exfsexfs.ws *
exfsifd1.w *
exfsifd1.ws *
exfsinfs.w *
exfsinfs.ws *
ia1dea1d.w *
ia1dea1d.ws *
ia1uea1u.w *
ia1uea1u.ws *
ia2cea2c.w *
ia2cea2c.ws *
ia2dea2d.w *
ia2dea2d.ws *
ia2uea2u.w *
ictlectl.w
ictlictl.w
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1d.ws *
mgnsea1u.w *
mgnsea1u.ws *
weightslist.txt *
                            
% Tue Apr 25 17:10:07 2000

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ifd2, efd2)  {
  From:  (1, 1)  {
    ([ 1, 1] -0.150000) 
  }
  From:  (1, 2)  {
    ([ 1, 2] -0.150000) 
  }
  From:  (1, 3)  {
    ([ 1, 3] -0.150000) 
  }
  From:  (1, 4)  {
    ([ 1, 4] -0.150000) 
  }
  From:  (1, 5)  {
    ([ 1, 5] -0.150000) 
  }
  From:  (1, 6)  {
    ([ 1, 6] -0.150000) 
  }
  From:  (1, 7)  {
    ([ 1, 7] -0.150000) 
  }
  From:  (1, 8)  {
    ([ 1, 8] -0.150000) 
  }
  From:  (1, 9)  {
    ([ 1, 9] -0.150000) 
  }
  From:  (2, 1)  {
    ([ 2, 1] -0.150000) 
  }
  From:  (2, 2)  {
    ([ 2, 2] -0.150000) 
  }
  From:  (2, 3)  {
    ([ 2, 3] -0.150000) 
  }
  From:  (2, 4)  {
    ([ 2, 4] -0.150000) 
  }
  From:  (2, 5)  {
    ([ 2, 5] -0.150000) 
  }
  From:  (2, 6)  {
    ([ 2, 6] -0.150000) 
  }
  From:  (2, 7)  {
    ([ 2, 7] -0.150000) 
  }
  From:  (2, 8)  {
    ([ 2, 8] -0.150000) 
  }
  From:  (2, 9)  {
    ([ 2, 9] -0.150000) 
  }
  From:  (3, 1)  {
    ([ 3, 1] -0.150000) 
  }
  From:  (3, 2)  {
    ([ 3, 2] -0.150000) 
  }
  From:  (3, 3)  {
    ([ 3, 3] -0.150000) 
  }
  From:  (3, 4)  {
    ([ 3, 4] -0.150000) 
  }
  From:  (3, 5)  {
    ([ 3, 5] -0.150000) 
  }
  From:  (3, 6)  {
    ([ 3, 6] -0.150000) 
  }
  From:  (3, 7)  {
    ([ 3, 7] -0.150000) 
  }
  From:  (3, 8)  {
    ([ 3, 8] -0.150000) 
  }
  From:  (3, 9)  {
    ([ 3, 9] -0.150000) 
  }
  From:  (4, 1)  {
    ([ 4, 1] -0.150000) 
  }
  From:  (4, 2)  {
    ([ 4, 2] -0.150000) 
  }
  From:  (4, 3)  {
    ([ 4, 3] -0.150000) 
  }
  From:  (4, 4)  {
    ([ 4, 4] -0.150000) 
  }
  From:  (4, 5)  {
    ([ 4, 5] -0.150000) 
  }
  From:  (4, 6)  {
    ([ 4, 6] -0.150000) 
  }
  From:  (4, 7)  {
    ([ 4, 7] -0.150000) 
  }
  From:  (4, 8)  {
    ([ 4, 8] -0.150000) 
  }
  From:  (4, 9)  {
    ([ 4, 9] -0.150000) 
  }
  From:  (5, 1)  {
    ([ 5, 1] -0.150000) 
  }
  From:  (5, 2)  {
    ([ 5, 2] -0.150000) 
  }
  From:  (5, 3)  {
    ([ 5, 3] -0.150000) 
  }
  From:  (5, 4)  {
    ([ 5, 4] -0.150000) 
  }
  From:  (5, 5)  {
    ([ 5, 5] -0.150000) 
  }
  From:  (5, 6)  {
    ([ 5, 6] -0.150000) 
  }
  From:  (5, 7)  {
    ([ 5, 7] -0.150000) 
  }
  From:  (5, 8)  {
    ([ 5, 8] -0.150000) 
  }
  From:  (5, 9)  {
    ([ 5, 9] -0.150000) 
  }
  From:  (6, 1)  {
    ([ 6, 1] -0.150000) 
  }
  From:  (6, 2)  {
    ([ 6, 2] -0.150000) 
  }
  From:  (6, 3)  {
    ([ 6, 3] -0.150000) 
  }
  From:  (6, 4)  {
    ([ 6, 4] -0.150000) 
  }
  From:  (6, 5)  {
    ([ 6, 5] -0.150000) 
  }
  From:  (6, 6)  {
    ([ 6, 6] -0.150000) 
  }
  From:  (6, 7)  {
    ([ 6, 7] -0.150000) 
  }
  From:  (6, 8)  {
    ([ 6, 8] -0.150000) 
  }
  From:  (6, 9)  {
    ([ 6, 9] -0.150000) 
  }
  From:  (7, 1)  {
    ([ 7, 1] -0.150000) 
  }
  From:  (7, 2)  {
    ([ 7, 2] -0.150000) 
  }
  From:  (7, 3)  {
    ([ 7, 3] -0.150000) 
  }
  From:  (7, 4)  {
    ([ 7, 4] -0.150000) 
  }
  From:  (7, 5)  {
    ([ 7, 5] -0.150000) 
  }
  From:  (7, 6)  {
    ([ 7, 6] -0.150000) 
  }
  From:  (7, 7)  {
    ([ 7, 7] -0.150000) 
  }
  From:  (7, 8)  {
    ([ 7, 8] -0.150000) 
  }
  From:  (7, 9)  {
    ([ 7, 9] -0.150000) 
  }
  From:  (8, 1)  {
    ([ 8, 1] -0.150000) 
  }
  From:  (8, 2)  {
    ([ 8, 2] -0.150000) 
  }
  From:  (8, 3)  {
    ([ 8, 3] -0.150000) 
  }
  From:  (8, 4)  {
    ([ 8, 4] -0.150000) 
  }
  From:  (8, 5)  {
    ([ 8, 5] -0.150000) 
  }
  From:  (8, 6)  {
    ([ 8, 6] -0.150000) 
  }
  From:  (8, 7)  {
    ([ 8, 7] -0.150000) 
  }
  From:  (8, 8)  {
    ([ 8, 8] -0.150000) 
  }
  From:  (8, 9)  {
    ([ 8, 9] -0.150000) 
  }
  From:  (9, 1)  {
    ([ 9, 1] -0.150000) 
  }
  From:  (9, 2)  {
    ([ 9, 2] -0.150000) 
  }
  From:  (9, 3)  {
    ([ 9, 3] -0.150000) 
  }
  From:  (9, 4)  {
    ([ 9, 4] -0.150000) 
  }
  From:  (9, 5)  {
    ([ 9, 5] -0.150000) 
  }
  From:  (9, 6)  {
    ([ 9, 6] -0.150000) 
  }
  From:  (9, 7)  {
    ([ 9, 7] -0.150000) 
  }
  From:  (9, 8)  {
    ([ 9, 8] -0.150000) 
  }
  From:  (9, 9)  {
    ([ 9, 9] -0.150000) 
  }
}

Loading data, please wait...