Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_original_with_feedback
attsefd2.w *
attvatts.w *
ea1dea1d.w *
ea1dea2c.w *
ea1dea2d.w *
ea1dia1d.w *
ea1uea1u.w *
ea1uea2c.w *
ea1uea2u.w *
ea1uia1u.w *
ea2cea2c.w *
ea2cestg.w *
ea2cia2c.w *
ea2dea2d.w *
ea2destg.w *
ea2dia2d.w *
ea2uea2u.w *
ea2uestg.w *
ea2uia2u.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ia1d.bak *
efd1ia1d.w
efd1ia1d.ws
efd1ia1u.bak *
efd1ia1u.w
efd1ia1u.ws
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1infs.w *
efd1istg.w *
efd2ea2c.w *
efd2ea2d.w *
efd2ea2u.w *
efd2efd1.w *
efd2efd2.w *
efd2estg.w *
efd2ifd2.w *
estgea2c.w *
estgea2d.w *
estgea2u.w *
estgestg.w *
estgexfs.w *
estgistg.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
ia1dea1d.w *
ia1uea1u.w *
ia2cea2c.w *
ia2dea2d.w *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1u.w *
netgen1 *
neuralnet.json
weightslist.txt *
                            
efd1 ia2c SV I(9 9) O(1 81) F(1 54) 0 0.0 Offset: 0 0
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 0.0035:0.002 
0.0035:0.002 

Loading data, please wait...