Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_original_with_feedback
attsefd2.w *
attvatts.w *
ea1dea1d.w *
ea1dea2c.w *
ea1dea2d.w *
ea1dia1d.w *
ea1uea1u.w *
ea1uea2c.w *
ea1uea2u.w *
ea1uia1u.w *
ea2cea2c.w *
ea2cestg.w *
ea2cia2c.w *
ea2dea2d.w *
ea2destg.w *
ea2dia2d.w *
ea2uea2u.w *
ea2uestg.w *
ea2uia2u.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ia1d.bak *
efd1ia1d.w
efd1ia1d.ws
efd1ia1u.bak *
efd1ia1u.w
efd1ia1u.ws
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1infs.w *
efd1istg.w *
efd2ea2c.w *
efd2ea2d.w *
efd2ea2u.w *
efd2efd1.w *
efd2efd2.w *
efd2estg.w *
efd2ifd2.w *
estgea2c.w *
estgea2d.w *
estgea2u.w *
estgestg.w *
estgexfs.w *
estgistg.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
ia1dea1d.w *
ia1uea1u.w *
ia2cea2c.w *
ia2dea2d.w *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1u.w *
netgen1 *
neuralnet.json
weightslist.txt *
                            
% Tue Apr 25 17:10:04 2000

% Input layer: (9, 9)
% Output layer: (1, 81)
% Fanout size: (1, 4)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(estg, ea2c)  {
  From:  (1, 1)  {
    ([ 1,80]  0.001777)     ([ 1,81]  0.001266)     ([ 1, 1]  0.001730)     ([ 1, 2]  0.001485) 
  }
  From:  (1, 2)  {
    ([ 1,81]  0.001403)     ([ 1, 1]  0.001748)     ([ 1, 2]  0.000918)     ([ 1, 3]  0.000872) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.001378)     ([ 1, 2]  0.000692)     ([ 1, 3]  0.001024)     ([ 1, 4]  0.000777) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.000984)     ([ 1, 3]  0.000840)     ([ 1, 4]  0.001005)     ([ 1, 5]  0.001028) 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.001328)     ([ 1, 4]  0.001388)     ([ 1, 5]  0.000803)     ([ 1, 6]  0.001452) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.001008)     ([ 1, 5]  0.000821)     ([ 1, 6]  0.001172)     ([ 1, 7]  0.001339) 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.000910)     ([ 1, 6]  0.001732)     ([ 1, 7]  0.001464)     ([ 1, 8]  0.001597) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.001293)     ([ 1, 7]  0.000784)     ([ 1, 8]  0.001041)     ([ 1, 9]  0.001229) 
  }
  From:  (1, 9)  {
    ([ 1, 7]  0.001604)     ([ 1, 8]  0.001794)     ([ 1, 9]  0.000700)     ([ 1,10]  0.001234) 
  }
  From:  (2, 1)  {
    ([ 1, 8]  0.001486)     ([ 1, 9]  0.001411)     ([ 1,10]  0.001745)     ([ 1,11]  0.001253) 
  }
  From:  (2, 2)  {
    ([ 1, 9]  0.001797)     ([ 1,10]  0.001012)     ([ 1,11]  0.001290)     ([ 1,12]  0.001806) 
  }
  From:  (2, 3)  {
    ([ 1,10]  0.001557)     ([ 1,11]  0.001577)     ([ 1,12]  0.001124)     ([ 1,13]  0.000897) 
  }
  From:  (2, 4)  {
    ([ 1,11]  0.000965)     ([ 1,12]  0.001731)     ([ 1,13]  0.001084)     ([ 1,14]  0.001318) 
  }
  From:  (2, 5)  {
    ([ 1,12]  0.001615)     ([ 1,13]  0.001568)     ([ 1,14]  0.000911)     ([ 1,15]  0.001824) 
  }
  From:  (2, 6)  {
    ([ 1,13]  0.001516)     ([ 1,14]  0.001573)     ([ 1,15]  0.000843)     ([ 1,16]  0.001780) 
  }
  From:  (2, 7)  {
    ([ 1,14]  0.001404)     ([ 1,15]  0.000833)     ([ 1,16]  0.001718)     ([ 1,17]  0.000959) 
  }
  From:  (2, 8)  {
    ([ 1,15]  0.001590)     ([ 1,16]  0.001139)     ([ 1,17]  0.001103)     ([ 1,18]  0.001521) 
  }
  From:  (2, 9)  {
    ([ 1,16]  0.001307)     ([ 1,17]  0.001317)     ([ 1,18]  0.001551)     ([ 1,19]  0.001331) 
  }
  From:  (3, 1)  {
    ([ 1,17]  0.001206)     ([ 1,18]  0.000999)     ([ 1,19]  0.001538)     ([ 1,20]  0.001603) 
  }
  From:  (3, 2)  {
    ([ 1,18]  0.001005)     ([ 1,19]  0.001287)     ([ 1,20]  0.000654)     ([ 1,21]  0.001665) 
  }
  From:  (3, 3)  {
    ([ 1,19]  0.001253)     ([ 1,20]  0.000668)     ([ 1,21]  0.000976)     ([ 1,22]  0.000724) 
  }
  From:  (3, 4)  {
    ([ 1,20]  0.001844)     ([ 1,21]  0.000900)     ([ 1,22]  0.001421)     ([ 1,23]  0.001642) 
  }
  From:  (3, 5)  {
    ([ 1,21]  0.001503)     ([ 1,22]  0.001737)     ([ 1,23]  0.001345)     ([ 1,24]  0.001231) 
  }
  From:  (3, 6)  {
    ([ 1,22]  0.001231)     ([ 1,23]  0.001417)     ([ 1,24]  0.000765)     ([ 1,25]  0.001220) 
  }
  From:  (3, 7)  {
    ([ 1,23]  0.001761)     ([ 1,24]  0.000842)     ([ 1,25]  0.001116)     ([ 1,26]  0.001221) 
  }
  From:  (3, 8)  {
    ([ 1,24]  0.001320)     ([ 1,25]  0.000723)     ([ 1,26]  0.001496)     ([ 1,27]  0.001519) 
  }
  From:  (3, 9)  {
    ([ 1,25]  0.000920)     ([ 1,26]  0.001653)     ([ 1,27]  0.001300)     ([ 1,28]  0.000774) 
  }
  From:  (4, 1)  {
    ([ 1,26]  0.001722)     ([ 1,27]  0.001256)     ([ 1,28]  0.001091)     ([ 1,29]  0.000694) 
  }
  From:  (4, 2)  {
    ([ 1,27]  0.001034)     ([ 1,28]  0.000960)     ([ 1,29]  0.001781)     ([ 1,30]  0.001478) 
  }
  From:  (4, 3)  {
    ([ 1,28]  0.001481)     ([ 1,29]  0.001190)     ([ 1,30]  0.001797)     ([ 1,31]  0.001272) 
  }
  From:  (4, 4)  {
    ([ 1,29]  0.000987)     ([ 1,30]  0.001434)     ([ 1,31]  0.000839)     ([ 1,32]  0.001492) 
  }
  From:  (4, 5)  {
    ([ 1,30]  0.001061)     ([ 1,31]  0.001197)     ([ 1,32]  0.001073)     ([ 1,33]  0.001387) 
  }
  From:  (4, 6)  {
    ([ 1,31]  0.000654)     ([ 1,32]  0.000747)     ([ 1,33]  0.001443)     ([ 1,34]  0.000717) 
  }
  From:  (4, 7)  {
    ([ 1,32]  0.001380)     ([ 1,33]  0.001822)     ([ 1,34]  0.000892)     ([ 1,35]  0.001393) 
  }
  From:  (4, 8)  {
    ([ 1,33]  0.000749)     ([ 1,34]  0.001829)     ([ 1,35]  0.001768)     ([ 1,36]  0.000911) 
  }
  From:  (4, 9)  {
    ([ 1,34]  0.000847)     ([ 1,35]  0.001589)     ([ 1,36]  0.001519)     ([ 1,37]  0.001273) 
  }
  From:  (5, 1)  {
    ([ 1,35]  0.000654)     ([ 1,36]  0.001739)     ([ 1,37]  0.001708)     ([ 1,38]  0.001517) 
  }
  From:  (5, 2)  {
    ([ 1,36]  0.001226)     ([ 1,37]  0.001483)     ([ 1,38]  0.000882)     ([ 1,39]  0.001750) 
  }
  From:  (5, 3)  {
    ([ 1,37]  0.001610)     ([ 1,38]  0.000934)     ([ 1,39]  0.001062)     ([ 1,40]  0.000655) 
  }
  From:  (5, 4)  {
    ([ 1,38]  0.001080)     ([ 1,39]  0.001326)     ([ 1,40]  0.001756)     ([ 1,41]  0.000698) 
  }
  From:  (5, 5)  {
    ([ 1,39]  0.001376)     ([ 1,40]  0.001815)     ([ 1,41]  0.001344)     ([ 1,42]  0.001426) 
  }
  From:  (5, 6)  {
    ([ 1,40]  0.001444)     ([ 1,41]  0.001485)     ([ 1,42]  0.001669)     ([ 1,43]  0.000755) 
  }
  From:  (5, 7)  {
    ([ 1,41]  0.001540)     ([ 1,42]  0.001721)     ([ 1,43]  0.000693)     ([ 1,44]  0.001196) 
  }
  From:  (5, 8)  {
    ([ 1,42]  0.001845)     ([ 1,43]  0.000832)     ([ 1,44]  0.000759)     ([ 1,45]  0.001159) 
  }
  From:  (5, 9)  {
    ([ 1,43]  0.000975)     ([ 1,44]  0.001471)     ([ 1,45]  0.001655)     ([ 1,46]  0.001796) 
  }
  From:  (6, 1)  {
    ([ 1,44]  0.001142)     ([ 1,45]  0.001395)     ([ 1,46]  0.000691)     ([ 1,47]  0.001090) 
  }
  From:  (6, 2)  {
    ([ 1,45]  0.000833)     ([ 1,46]  0.001606)     ([ 1,47]  0.001487)     ([ 1,48]  0.000918) 
  }
  From:  (6, 3)  {
    ([ 1,46]  0.001103)     ([ 1,47]  0.001628)     ([ 1,48]  0.001655)     ([ 1,49]  0.001340) 
  }
  From:  (6, 4)  {
    ([ 1,47]  0.001177)     ([ 1,48]  0.000836)     ([ 1,49]  0.000974)     ([ 1,50]  0.000833) 
  }
  From:  (6, 5)  {
    ([ 1,48]  0.001375)     ([ 1,49]  0.001324)     ([ 1,50]  0.001155)     ([ 1,51]  0.001008) 
  }
  From:  (6, 6)  {
    ([ 1,49]  0.000820)     ([ 1,50]  0.000658)     ([ 1,51]  0.000807)     ([ 1,52]  0.001307) 
  }
  From:  (6, 7)  {
    ([ 1,50]  0.001186)     ([ 1,51]  0.000704)     ([ 1,52]  0.001018)     ([ 1,53]  0.001822) 
  }
  From:  (6, 8)  {
    ([ 1,51]  0.001497)     ([ 1,52]  0.001226)     ([ 1,53]  0.001694)     ([ 1,54]  0.001464) 
  }
  From:  (6, 9)  {
    ([ 1,52]  0.001818)     ([ 1,53]  0.001717)     ([ 1,54]  0.001732)     ([ 1,55]  0.001801) 
  }
  From:  (7, 1)  {
    ([ 1,53]  0.000932)     ([ 1,54]  0.001457)     ([ 1,55]  0.000678)     ([ 1,56]  0.000845) 
  }
  From:  (7, 2)  {
    ([ 1,54]  0.001799)     ([ 1,55]  0.000671)     ([ 1,56]  0.000730)     ([ 1,57]  0.001054) 
  }
  From:  (7, 3)  {
    ([ 1,55]  0.001709)     ([ 1,56]  0.001048)     ([ 1,57]  0.001620)     ([ 1,58]  0.001023) 
  }
  From:  (7, 4)  {
    ([ 1,56]  0.001047)     ([ 1,57]  0.001232)     ([ 1,58]  0.000745)     ([ 1,59]  0.000826) 
  }
  From:  (7, 5)  {
    ([ 1,57]  0.000732)     ([ 1,58]  0.001186)     ([ 1,59]  0.001724)     ([ 1,60]  0.001032) 
  }
  From:  (7, 6)  {
    ([ 1,58]  0.001723)     ([ 1,59]  0.001516)     ([ 1,60]  0.001036)     ([ 1,61]  0.001194) 
  }
  From:  (7, 7)  {
    ([ 1,59]  0.001172)     ([ 1,60]  0.001036)     ([ 1,61]  0.001459)     ([ 1,62]  0.001751) 
  }
  From:  (7, 8)  {
    ([ 1,60]  0.001017)     ([ 1,61]  0.001711)     ([ 1,62]  0.001029)     ([ 1,63]  0.000711) 
  }
  From:  (7, 9)  {
    ([ 1,61]  0.001484)     ([ 1,62]  0.001771)     ([ 1,63]  0.001553)     ([ 1,64]  0.001120) 
  }
  From:  (8, 1)  {
    ([ 1,62]  0.001425)     ([ 1,63]  0.000943)     ([ 1,64]  0.001763)     ([ 1,65]  0.001620) 
  }
  From:  (8, 2)  {
    ([ 1,63]  0.001603)     ([ 1,64]  0.001443)     ([ 1,65]  0.001432)     ([ 1,66]  0.000715) 
  }
  From:  (8, 3)  {
    ([ 1,64]  0.000751)     ([ 1,65]  0.001641)     ([ 1,66]  0.001675)     ([ 1,67]  0.001719) 
  }
  From:  (8, 4)  {
    ([ 1,65]  0.000687)     ([ 1,66]  0.001461)     ([ 1,67]  0.001756)     ([ 1,68]  0.001367) 
  }
  From:  (8, 5)  {
    ([ 1,66]  0.001173)     ([ 1,67]  0.001504)     ([ 1,68]  0.001535)     ([ 1,69]  0.001105) 
  }
  From:  (8, 6)  {
    ([ 1,67]  0.000720)     ([ 1,68]  0.001360)     ([ 1,69]  0.000827)     ([ 1,70]  0.001747) 
  }
  From:  (8, 7)  {
    ([ 1,68]  0.001431)     ([ 1,69]  0.001515)     ([ 1,70]  0.001249)     ([ 1,71]  0.000684) 
  }
  From:  (8, 8)  {
    ([ 1,69]  0.001762)     ([ 1,70]  0.000848)     ([ 1,71]  0.001346)     ([ 1,72]  0.001006) 
  }
  From:  (8, 9)  {
    ([ 1,70]  0.001254)     ([ 1,71]  0.001131)     ([ 1,72]  0.001552)     ([ 1,73]  0.000860) 
  }
  From:  (9, 1)  {
    ([ 1,71]  0.001326)     ([ 1,72]  0.000789)     ([ 1,73]  0.001064)     ([ 1,74]  0.000793) 
  }
  From:  (9, 2)  {
    ([ 1,72]  0.000695)     ([ 1,73]  0.001273)     ([ 1,74]  0.001097)     ([ 1,75]  0.000709) 
  }
  From:  (9, 3)  {
    ([ 1,73]  0.001094)     ([ 1,74]  0.001134)     ([ 1,75]  0.001221)     ([ 1,76]  0.001132) 
  }
  From:  (9, 4)  {
    ([ 1,74]  0.001296)     ([ 1,75]  0.001250)     ([ 1,76]  0.001365)     ([ 1,77]  0.001840) 
  }
  From:  (9, 5)  {
    ([ 1,75]  0.001650)     ([ 1,76]  0.001249)     ([ 1,77]  0.000910)     ([ 1,78]  0.001688) 
  }
  From:  (9, 6)  {
    ([ 1,76]  0.000737)     ([ 1,77]  0.001245)     ([ 1,78]  0.000921)     ([ 1,79]  0.001040) 
  }
  From:  (9, 7)  {
    ([ 1,77]  0.001026)     ([ 1,78]  0.001238)     ([ 1,79]  0.001063)     ([ 1,80]  0.001104) 
  }
  From:  (9, 8)  {
    ([ 1,78]  0.001701)     ([ 1,79]  0.000694)     ([ 1,80]  0.001613)     ([ 1,81]  0.001727) 
  }
  From:  (9, 9)  {
    ([ 1,79]  0.001153)     ([ 1,80]  0.000735)     ([ 1,81]  0.001205)     ([ 1, 1]  0.001739) 
  }
}

Loading data, please wait...