Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_1
attsefd2.w
attvatts.w
ectlectl.w *
ectlictl.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4cexss.w
ev4civ4c.w
ev4h.wt
ev4hev1h.w
ev4hev4h.w
ev4hexss.w
ev4hiv4h.w
ev4v.wt
ev4vev1v.w
ev4vev4v.w
ev4vexss.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ictlectl.w
ictlictl.w *
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Tue Apr 28 13:29:57 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    |              | 
    |              | 
    ([ 1, 1]  0.031427) 
    ([ 2, 1]  0.031661) 
    ([ 3, 1]  0.045440) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.031974) 
    |              | 
    ([ 1, 2]  0.039842) 
    |              | 
    ([ 3, 2]  0.038367) 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.032035) 
    |              | 
    |              | 
    |              | 
    ([ 3, 3]  0.036489) 
  }
  From:  (1, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 4]  0.035993) 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.048635) 
    |              | 
    ([ 1, 5]  0.042695) 
    ([ 2, 5]  0.041327) 
    |              | 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 6]  0.031251) 
  }
  From:  (1, 7)  {
    |              | 
    |              | 
    ([ 1, 7]  0.044394) 
    |              | 
    ([ 3, 7]  0.043477) 
  }
  From:  (1, 8)  {
    |              | 
    |              | 
    ([ 1, 8]  0.038088) 
    |              | 
    |              | 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.042819) 
    ([ 9, 9]  0.035174) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.030034) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.035620) 
    ([ 1, 2]  0.039329) 
    ([ 2, 2]  0.046471) 
    ([ 3, 2]  0.047120) 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.037736) 
    ([ 1, 3]  0.035307) 
    ([ 2, 3]  0.045925) 
    |              | 
    ([ 4, 3]  0.047798) 
  }
  From:  (2, 4)  {
    |              | 
    ([ 1, 4]  0.040279) 
    ([ 2, 4]  0.031479) 
    ([ 3, 4]  0.030757) 
    ([ 4, 4]  0.036923) 
  }
  From:  (2, 5)  {
    |              | 
    ([ 1, 5]  0.031999) 
    ([ 2, 5]  0.046941) 
    |              | 
    ([ 4, 5]  0.046118) 
  }
  From:  (2, 6)  {
    |              | 
    ([ 1, 6]  0.046916) 
    |              | 
    |              | 
    ([ 4, 6]  0.032827) 
  }
  From:  (2, 7)  {
    |              | 
    ([ 1, 7]  0.049319) 
    ([ 2, 7]  0.039223) 
    ([ 3, 7]  0.030315) 
    |              | 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.039263) 
    ([ 1, 8]  0.042466) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    ([ 1, 9]  0.032535) 
    |              | 
    |              | 
    ([ 4, 9]  0.037313) 
  }
  From:  (3, 1)  {
    ([ 1, 1]  0.044413) 
    |              | 
    |              | 
    ([ 4, 1]  0.044596) 
    |              | 
  }
  From:  (3, 2)  {
    ([ 1, 2]  0.034420) 
    |              | 
    |              | 
    ([ 4, 2]  0.049611) 
    ([ 5, 2]  0.030853) 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.042829) 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 4)  {
    ([ 1, 4]  0.033269) 
    |              | 
    |              | 
    |              | 
    ([ 5, 4]  0.049660) 
  }
  From:  (3, 5)  {
    ([ 1, 5]  0.049751) 
    |              | 
    ([ 3, 5]  0.046534) 
    ([ 4, 5]  0.046661) 
    |              | 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.040009) 
    |              | 
    |              | 
    ([ 4, 6]  0.046847) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.033097) 
    |              | 
    |              | 
    ([ 4, 7]  0.041152) 
    ([ 5, 7]  0.043908) 
  }
  From:  (3, 8)  {
    |              | 
    ([ 2, 8]  0.031222) 
    |              | 
    ([ 4, 8]  0.046929) 
    ([ 5, 8]  0.043358) 
  }
  From:  (3, 9)  {
    ([ 1, 9]  0.035291) 
    |              | 
    |              | 
    |              | 
    ([ 5, 9]  0.047182) 
  }
  From:  (4, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 1]  0.035092) 
  }
  From:  (4, 2)  {
    |              | 
    |              | 
    ([ 4, 2]  0.046920) 
    ([ 5, 2]  0.040131) 
    ([ 6, 2]  0.046623) 
  }
  From:  (4, 3)  {
    ([ 2, 3]  0.046178) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 4)  {
    |              | 
    ([ 3, 4]  0.031684) 
    ([ 4, 4]  0.038217) 
    ([ 5, 4]  0.033461) 
    |              | 
  }
  From:  (4, 5)  {
    ([ 2, 5]  0.031247) 
    ([ 3, 5]  0.032577) 
    |              | 
    ([ 5, 5]  0.046339) 
    |              | 
  }
  From:  (4, 6)  {
    ([ 2, 6]  0.047640) 
    |              | 
    |              | 
    ([ 5, 6]  0.032692) 
    |              | 
  }
  From:  (4, 7)  {
    |              | 
    ([ 3, 7]  0.049554) 
    ([ 4, 7]  0.031772) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.033771) 
    |              | 
    |              | 
    |              | 
    ([ 6, 8]  0.048913) 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.044291) 
    ([ 3, 9]  0.042375) 
    |              | 
    |              | 
    ([ 6, 9]  0.047094) 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.044004) 
    ([ 4, 1]  0.046709) 
    |              | 
    ([ 6, 1]  0.038369) 
    |              | 
  }
  From:  (5, 2)  {
    ([ 3, 2]  0.036757) 
    ([ 4, 2]  0.040193) 
    ([ 5, 2]  0.044831) 
    ([ 6, 2]  0.049979) 
    |              | 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.040189) 
    ([ 4, 3]  0.035421) 
    |              | 
    ([ 6, 3]  0.048841) 
    ([ 7, 3]  0.049077) 
  }
  From:  (5, 4)  {
    |              | 
    ([ 4, 4]  0.036071) 
    ([ 5, 4]  0.041743) 
    ([ 6, 4]  0.041962) 
    |              | 
  }
  From:  (5, 5)  {
    |              | 
    |              | 
    ([ 5, 5]  0.041048) 
    ([ 6, 5]  0.047184) 
    ([ 7, 5]  0.030354) 
  }
  From:  (5, 6)  {
    |              | 
    |              | 
    ([ 5, 6]  0.048798) 
    |              | 
    |              | 
  }
  From:  (5, 7)  {
    |              | 
    ([ 4, 7]  0.040608) 
    ([ 5, 7]  0.033523) 
    |              | 
    |              | 
  }
  From:  (5, 8)  {
    ([ 3, 8]  0.047420) 
    |              | 
    ([ 5, 8]  0.043510) 
    ([ 6, 8]  0.032420) 
    |              | 
  }
  From:  (5, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 9]  0.033850) 
    ([ 7, 9]  0.030124) 
  }
  From:  (6, 1)  {
    |              | 
    ([ 5, 1]  0.046013) 
    |              | 
    |              | 
    ([ 8, 1]  0.042620) 
  }
  From:  (6, 2)  {
    |              | 
    |              | 
    ([ 6, 2]  0.031806) 
    ([ 7, 2]  0.039064) 
    |              | 
  }
  From:  (6, 3)  {
    ([ 4, 3]  0.032951) 
    ([ 5, 3]  0.043772) 
    ([ 6, 3]  0.035929) 
    ([ 7, 3]  0.049200) 
    ([ 8, 3]  0.039087) 
  }
  From:  (6, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.035887)   }
  From:  (6, 5)  {
    |              | 
    |              | 
    ([ 6, 5]  0.041593) 
    ([ 7, 5]  0.040318) 
    |              | 
  }
  From:  (6, 6)  {
    ([ 4, 6]  0.048722) 
    |              | 
    ([ 6, 6]  0.049622) 
    |              | 
    |              | 
  }
  From:  (6, 7)  {
    ([ 4, 7]  0.033827) 
    ([ 5, 7]  0.042881) 
    ([ 6, 7]  0.032436) 
    ([ 7, 7]  0.043684) 
    ([ 8, 7]  0.037580) 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.048688) 
    ([ 5, 8]  0.043710) 
    |              | 
    ([ 7, 8]  0.034703) 
    ([ 8, 8]  0.049426) 
  }
  From:  (6, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 9]  0.032666) 
    |              | 
  }
  From:  (7, 1)  {
    |              | 
    |              | 
    ([ 7, 1]  0.039050) 
    |              | 
    ([ 9, 1]  0.042421) 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.030100)   }
  From:  (7, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.035704)   }
  From:  (7, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.034741)   }
  From:  (7, 5)  {
    ([ 5, 5]  0.038434) 
    ([ 6, 5]  0.036069) 
    |              | 
    |              | 
    ([ 9, 5]  0.046569) 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.037711) 
    ([ 6, 6]  0.036887) 
    ([ 7, 6]  0.031791) 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.030171) 
    |              | 
    |              | 
    ([ 8, 7]  0.037198) 
    |              | 
  }
  From:  (7, 8)  {
    |              | 
    ([ 6, 8]  0.039433) 
    |              | 
    ([ 8, 8]  0.032037) 
    |              | 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.043195) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 1)  {
    |              | 
    ([ 7, 1]  0.032609) 
    ([ 8, 1]  0.046303) 
    |              | 
    ([ 1, 1]  0.043788) 
  }
  From:  (8, 2)  {
    ([ 6, 2]  0.036270) 
    |              | 
    |              | 
    |              | 
    ([ 1, 2]  0.047650) 
  }
  From:  (8, 3)  {
    |              | 
    ([ 7, 3]  0.043650) 
    ([ 8, 3]  0.047889) 
    ([ 9, 3]  0.048770) 
    ([ 1, 3]  0.030210) 
  }
  From:  (8, 4)  {
    ([ 6, 4]  0.039377) 
    |              | 
    ([ 8, 4]  0.031005) 
    ([ 9, 4]  0.033451) 
    ([ 1, 4]  0.043706) 
  }
  From:  (8, 5)  {
    ([ 6, 5]  0.046442) 
    |              | 
    |              | 
    |              | 
    ([ 1, 5]  0.035839) 
  }
  From:  (8, 6)  {
    |              | 
    ([ 7, 6]  0.049125) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    ([ 8, 7]  0.033856) 
    |              | 
    ([ 1, 7]  0.033446) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.038632) 
    ([ 7, 8]  0.031801) 
    |              | 
    |              | 
    ([ 1, 8]  0.037403) 
  }
  From:  (8, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 9]  0.030773) 
    |              | 
  }
  From:  (9, 1)  {
    |              | 
    |              | 
    ([ 9, 1]  0.034201) 
    |              | 
    |              | 
  }
  From:  (9, 2)  {
    |              | 
    |              | 
    ([ 9, 2]  0.034352) 
    ([ 1, 2]  0.046720) 
    |              | 
  }
  From:  (9, 3)  {
    |              | 
    ([ 8, 3]  0.041355) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 4)  {
    ([ 7, 4]  0.033831) 
    ([ 8, 4]  0.034446) 
    |              | 
    |              | 
    ([ 2, 4]  0.044349) 
  }
  From:  (9, 5)  {
    |              | 
    ([ 8, 5]  0.036570) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.042738) 
    |              | 
    ([ 9, 6]  0.045564) 
    ([ 1, 6]  0.047059) 
    ([ 2, 6]  0.047435) 
  }
  From:  (9, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 2, 7]  0.031730) 
  }
  From:  (9, 8)  {
    ([ 7, 8]  0.045693) 
    |              | 
    ([ 9, 8]  0.033672) 
    |              | 
    ([ 2, 8]  0.030991) 
  }
  From:  (9, 9)  {
    ([ 7, 9]  0.032371) 
    |              | 
    |              | 
    |              | 
    ([ 2, 9]  0.036572) 
  }
}

Loading data, please wait...