Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_10
attsefd2.w
attsefd2.ws *
attvatts.w
attvatts.ws *
efd1efd1.w
efd1efd1.ws *
efd1efd2.w
efd1efd2.ws *
efd1exfr.w
efd1exfr.ws *
efd1ifd1.w
efd1ifd1.ws *
efd1infs.w
efd1infs.ws *
efd1inss.w
efd1inss.ws *
efd2efd1.w
efd2efd1.ws *
efd2efd2.w
efd2efd2.ws *
efd2ev4c.w
efd2ev4c.ws *
efd2ev4h.w
efd2ev4h.ws *
efd2ev4v.w
efd2ev4v.ws *
efd2exss.w
efd2exss.ws *
efd2ifd2.w
efd2ifd2.ws *
ev1hev1h.w
ev1hev1h.ws *
ev1hev4c.w
ev1hev4c.ws *
ev1hev4h.w
ev1hev4h.ws *
ev1hiv1h.w
ev1hiv1h.ws *
ev1vev1v.w
ev1vev1v.ws *
ev1vev4c.w
ev1vev4c.ws *
ev1vev4v.w
ev1vev4v.ws *
ev1viv1v.w
ev1viv1v.ws *
ev4c.wt *
ev4cev4c.w
ev4cev4c.ws *
ev4civ4c.w
ev4civ4c.ws *
ev4h.wt *
ev4hev1h.w
ev4hev1h.ws *
ev4hev4h.w
ev4hev4h.ws *
ev4hiv4h.w
ev4hiv4h.ws *
ev4v.wt *
ev4vev1v.w
ev4vev1v.ws *
ev4vev4v.w
ev4vev4v.ws *
ev4viv4v.w
ev4viv4v.ws *
exfrexfr.w
exfrexfr.ws *
exfrifd1.w
exfrifd1.ws *
exfrifd2.w
exfrifd2.ws *
exfrinfr.w
exfrinfr.ws *
exfsefd2.w
exfsefd2.ws *
exfsexfr.w
exfsexfr.ws *
exfsexfs.w
exfsexfs.ws *
exfsifd1.w
exfsifd1.ws *
exfsinfs.w
exfsinfs.ws *
exssev4c.w
exssev4c.ws *
exssev4h.w
exssev4h.ws *
exssev4v.w
exssev4v.ws *
exssexfs.w
exssexfs.ws *
exssexss.w
exssexss.ws *
exssinss.w
exssinss.ws *
ifd1efd1.w
ifd1efd1.ws *
ifd2efd2.w
ifd2efd2.ws *
infrexfr.w
infrexfr.ws *
infsexfs.w
infsexfs.ws *
inssexss.w
inssexss.ws *
iv1hev1h.w
iv1hev1h.ws *
iv1vev1v.w
iv1vev1v.ws *
iv4cev4c.w
iv4cev4c.ws *
iv4hev4h.w
iv4hev4h.ws *
iv4vev4v.w
iv4vev4v.ws *
lgnsev1h.w
lgnsev1h.ws *
lgnsev1v.w
lgnsev1v.ws *
weightslist.txt
                            
% Fri Aug 21 23:06:03 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 1]  0.036471) 
    ([ 3, 1]  0.049909) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.042237) 
    ([ 9, 2]  0.038127) 
    ([ 1, 2]  0.047136) 
    ([ 2, 2]  0.036583) 
    |              | 
  }
  From:  (1, 3)  {
    |              | 
    ([ 9, 3]  0.048879) 
    |              | 
    ([ 2, 3]  0.032899) 
    ([ 3, 3]  0.044495) 
  }
  From:  (1, 4)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 4]  0.040284) 
    |              | 
  }
  From:  (1, 5)  {
    |              | 
    ([ 9, 5]  0.044853) 
    ([ 1, 5]  0.033041) 
    ([ 2, 5]  0.049872) 
    |              | 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.039798)   }
  From:  (1, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 7]  0.037731) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.030476) 
    ([ 9, 8]  0.047682) 
    ([ 1, 8]  0.039387) 
    |              | 
    ([ 3, 8]  0.041285) 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.044833) 
    |              | 
    |              | 
    |              | 
    ([ 3, 9]  0.043049) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.044200) 
    ([ 2, 1]  0.049010) 
    ([ 3, 1]  0.037706) 
    |              | 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.033957) 
    ([ 1, 2]  0.039125) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.048638) 
    |              | 
    ([ 2, 3]  0.043526) 
    ([ 3, 3]  0.043399) 
    ([ 4, 3]  0.035109) 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 4]  0.030048) 
    ([ 4, 4]  0.039504) 
  }
  From:  (2, 5)  {
    |              | 
    ([ 1, 5]  0.045754) 
    |              | 
    |              | 
    ([ 4, 5]  0.034164) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.043616) 
    ([ 1, 6]  0.045898) 
    |              | 
    ([ 3, 6]  0.031156) 
    |              | 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.043713) 
    ([ 1, 7]  0.042313) 
    ([ 2, 7]  0.032975) 
    ([ 3, 7]  0.038642) 
    |              | 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.031781) 
    ([ 1, 8]  0.033960) 
    ([ 2, 8]  0.037081) 
    |              | 
    ([ 4, 8]  0.035538) 
  }
  From:  (2, 9)  {
    |              | 
    |              | 
    ([ 2, 9]  0.033205) 
    |              | 
    |              | 
  }
  From:  (3, 1)  {
    |              | 
    ([ 2, 1]  0.049530) 
    ([ 3, 1]  0.034911) 
    |              | 
    |              | 
  }
  From:  (3, 2)  {
    ([ 1, 2]  0.032189) 
    ([ 2, 2]  0.044018) 
    ([ 3, 2]  0.030738) 
    |              | 
    ([ 5, 2]  0.041124) 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.036818) 
    ([ 3, 3]  0.038018) 
    |              | 
    ([ 5, 3]  0.047082) 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 5, 4]  0.037257) 
  }
  From:  (3, 5)  {
    |              | 
    ([ 2, 5]  0.031928) 
    ([ 3, 5]  0.036502) 
    |              | 
    ([ 5, 5]  0.048447) 
  }
  From:  (3, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.044033)   }
  From:  (3, 7)  {
    |              | 
    ([ 2, 7]  0.046455) 
    ([ 3, 7]  0.042994) 
    ([ 4, 7]  0.044938) 
    ([ 5, 7]  0.034230) 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.042245) 
    ([ 2, 8]  0.034594) 
    |              | 
    ([ 4, 8]  0.039500) 
    ([ 5, 8]  0.036888) 
  }
  From:  (3, 9)  {
    ([ 1, 9]  0.043970) 
    |              | 
    ([ 3, 9]  0.037371) 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    ([ 2, 1]  0.048058) 
    |              | 
    ([ 4, 1]  0.033794) 
    |              | 
    ([ 6, 1]  0.046649) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.046144) 
    |              | 
    |              | 
    |              | 
    ([ 6, 2]  0.048745) 
  }
  From:  (4, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 3]  0.045273) 
  }
  From:  (4, 4)  {
    ([ 2, 4]  0.042031) 
    |              | 
    ([ 4, 4]  0.038091) 
    |              | 
    |              | 
  }
  From:  (4, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 5]  0.039431) 
    ([ 6, 5]  0.041659) 
  }
  From:  (4, 6)  {
    |              | 
    |              | 
    ([ 4, 6]  0.035509) 
    ([ 5, 6]  0.045764) 
    ([ 6, 6]  0.041365) 
  }
  From:  (4, 7)  {
    |              | 
    |              | 
    ([ 4, 7]  0.045270) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    |              | 
    |              | 
    ([ 4, 8]  0.043062) 
    ([ 5, 8]  0.031648) 
    ([ 6, 8]  0.048944) 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.045075) 
    ([ 3, 9]  0.036021) 
    ([ 4, 9]  0.043857) 
    ([ 5, 9]  0.038202) 
    |              | 
  }
  From:  (5, 1)  {
    |              | 
    ([ 4, 1]  0.036748) 
    ([ 5, 1]  0.031785) 
    ([ 6, 1]  0.038216) 
    ([ 7, 1]  0.037135) 
  }
  From:  (5, 2)  {
    ([ 3, 2]  0.049408) 
    |              | 
    ([ 5, 2]  0.034920) 
    ([ 6, 2]  0.038061) 
    |              | 
  }
  From:  (5, 3)  {
    |              | 
    ([ 4, 3]  0.042579) 
    ([ 5, 3]  0.041575) 
    ([ 6, 3]  0.042864) 
    |              | 
  }
  From:  (5, 4)  {
    |              | 
    ([ 4, 4]  0.035143) 
    |              | 
    |              | 
    ([ 7, 4]  0.031125) 
  }
  From:  (5, 5)  {
    |              | 
    |              | 
    ([ 5, 5]  0.040328) 
    |              | 
    |              | 
  }
  From:  (5, 6)  {
    ([ 3, 6]  0.045097) 
    ([ 4, 6]  0.040155) 
    ([ 5, 6]  0.049656) 
    |              | 
    |              | 
  }
  From:  (5, 7)  {
    ([ 3, 7]  0.047257) 
    |              | 
    ([ 5, 7]  0.037833) 
    ([ 6, 7]  0.033899) 
    |              | 
  }
  From:  (5, 8)  {
    ([ 3, 8]  0.044048) 
    |              | 
    |              | 
    |              | 
    ([ 7, 8]  0.042531) 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.037766) 
    ([ 4, 9]  0.034383) 
    ([ 5, 9]  0.045329) 
    ([ 6, 9]  0.041049) 
    ([ 7, 9]  0.031697) 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.031895) 
    ([ 5, 1]  0.042344) 
    ([ 6, 1]  0.048851) 
    |              | 
    ([ 8, 1]  0.041897) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.036281) 
    ([ 6, 2]  0.036473) 
    ([ 7, 2]  0.047352) 
    ([ 8, 2]  0.032133) 
  }
  From:  (6, 3)  {
    ([ 4, 3]  0.040779) 
    |              | 
    |              | 
    ([ 7, 3]  0.034831) 
    |              | 
  }
  From:  (6, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.040155)   }
  From:  (6, 5)  {
    ([ 4, 5]  0.044236) 
    ([ 5, 5]  0.036098) 
    |              | 
    ([ 7, 5]  0.048361) 
    |              | 
  }
  From:  (6, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 6]  0.039575) 
    ([ 8, 6]  0.040824) 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.037962) 
    ([ 6, 7]  0.047981) 
    ([ 7, 7]  0.042615) 
    ([ 8, 7]  0.034169) 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.045074) 
    |              | 
    ([ 6, 8]  0.039467) 
    ([ 7, 8]  0.047046) 
    ([ 8, 8]  0.046083) 
  }
  From:  (6, 9)  {
    |              | 
    |              | 
    ([ 6, 9]  0.035907) 
    |              | 
    ([ 8, 9]  0.035219) 
  }
  From:  (7, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 8, 1]  0.034786) 
    ([ 9, 1]  0.034281) 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    ([ 7, 2]  0.048074) 
    ([ 8, 2]  0.048610) 
    ([ 9, 2]  0.046953) 
  }
  From:  (7, 3)  {
    |              | 
    ([ 6, 3]  0.030325) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.041201) 
    |              | 
    ([ 7, 4]  0.040625) 
    ([ 8, 4]  0.048717) 
    |              | 
  }
  From:  (7, 5)  {
    ([ 5, 5]  0.045441) 
    ([ 6, 5]  0.038368) 
    |              | 
    ([ 8, 5]  0.031243) 
    ([ 9, 5]  0.049190) 
  }
  From:  (7, 6)  {
    |              | 
    ([ 6, 6]  0.039880) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 8, 7]  0.043385) 
    |              | 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.049585) 
    |              | 
    |              | 
    |              | 
    ([ 9, 8]  0.034882) 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.040685) 
    |              | 
    |              | 
    |              | 
    ([ 9, 9]  0.035618) 
  }
  From:  (8, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.047397) 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    ([ 8, 2]  0.038512) 
    ([ 9, 2]  0.035904) 
    ([ 1, 2]  0.039597) 
  }
  From:  (8, 3)  {
    |              | 
    ([ 7, 3]  0.042970) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 4)  {
    |              | 
    ([ 7, 4]  0.043607) 
    |              | 
    ([ 9, 4]  0.034880) 
    ([ 1, 4]  0.031872) 
  }
  From:  (8, 5)  {
    ([ 6, 5]  0.033906) 
    ([ 7, 5]  0.037806) 
    |              | 
    ([ 9, 5]  0.046076) 
    ([ 1, 5]  0.048534) 
  }
  From:  (8, 6)  {
    ([ 6, 6]  0.045919) 
    ([ 7, 6]  0.045210) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 7)  {
    ([ 6, 7]  0.045520) 
    ([ 7, 7]  0.035601) 
    |              | 
    |              | 
    ([ 1, 7]  0.033131) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.049255) 
    |              | 
    ([ 8, 8]  0.049877) 
    |              | 
    |              | 
  }
  From:  (8, 9)  {
    |              | 
    ([ 7, 9]  0.042157) 
    |              | 
    ([ 9, 9]  0.038656) 
    |              | 
  }
  From:  (9, 1)  {
    |              | 
    ([ 8, 1]  0.049923) 
    ([ 9, 1]  0.048369) 
    ([ 1, 1]  0.033981) 
    |              | 
  }
  From:  (9, 2)  {
    ([ 7, 2]  0.043786) 
    ([ 8, 2]  0.036384) 
    ([ 9, 2]  0.046030) 
    ([ 1, 2]  0.037780) 
    ([ 2, 2]  0.037826) 
  }
  From:  (9, 3)  {
    |              | 
    |              | 
    ([ 9, 3]  0.047770) 
    |              | 
    ([ 2, 3]  0.037430) 
  }
  From:  (9, 4)  {
    ([ 7, 4]  0.031565) 
    ([ 8, 4]  0.042095) 
    ([ 9, 4]  0.037653) 
    ([ 1, 4]  0.047423) 
    ([ 2, 4]  0.033036) 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.042845) 
    |              | 
    |              | 
    ([ 1, 5]  0.040148) 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.038039) 
    ([ 8, 6]  0.030526) 
    ([ 9, 6]  0.035567) 
    |              | 
    ([ 2, 6]  0.038767) 
  }
  From:  (9, 7)  {
    ([ 7, 7]  0.032551) 
    ([ 8, 7]  0.036300) 
    ([ 9, 7]  0.034499) 
    |              | 
    ([ 2, 7]  0.040091) 
  }
  From:  (9, 8)  {
    ([ 7, 8]  0.032141) 
    ([ 8, 8]  0.038146) 
    ([ 9, 8]  0.048960) 
    |              | 
    ([ 2, 8]  0.032574) 
  }
  From:  (9, 9)  {
    |              | 
    ([ 8, 9]  0.038742) 
    ([ 9, 9]  0.047489) 
    |              | 
    ([ 2, 9]  0.038188) 
  }
}

Loading data, please wait...