Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_11
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 08:14:52 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    |              | 
    ([ 9, 1]  0.038074) 
    |              | 
    ([ 2, 1]  0.034303) 
    ([ 3, 1]  0.033149) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.034892) 
    |              | 
    ([ 1, 2]  0.034214) 
    ([ 2, 2]  0.037753) 
    ([ 3, 2]  0.048621) 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.049307) 
    |              | 
    ([ 1, 3]  0.040347) 
    ([ 2, 3]  0.037941) 
    ([ 3, 3]  0.033122) 
  }
  From:  (1, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 4]  0.030463) 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.044251) 
    ([ 9, 5]  0.040607) 
    ([ 1, 5]  0.034254) 
    ([ 2, 5]  0.048493) 
    ([ 3, 5]  0.041611) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.048524)   }
  From:  (1, 7)  {
    |              | 
    ([ 9, 7]  0.042240) 
    ([ 1, 7]  0.030298) 
    ([ 2, 7]  0.030859) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.044192) 
    |              | 
    ([ 1, 8]  0.036769) 
    |              | 
    |              | 
  }
  From:  (1, 9)  {
    |              | 
    ([ 9, 9]  0.047806) 
    ([ 1, 9]  0.033319) 
    ([ 2, 9]  0.044600) 
    ([ 3, 9]  0.037308) 
  }
  From:  (2, 1)  {
    ([ 9, 1]  0.033141) 
    ([ 1, 1]  0.039788) 
    |              | 
    |              | 
    ([ 4, 1]  0.045361) 
  }
  From:  (2, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 2]  0.038774) 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.045954) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.032111)   }
  From:  (2, 5)  {
    ([ 9, 5]  0.037094) 
    |              | 
    ([ 2, 5]  0.042066) 
    |              | 
    ([ 4, 5]  0.039268) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.042017) 
    |              | 
    |              | 
    ([ 3, 6]  0.042713) 
    ([ 4, 6]  0.049350) 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.049861) 
    |              | 
    ([ 2, 7]  0.043885) 
    |              | 
    ([ 4, 7]  0.046549) 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.042919) 
    |              | 
    ([ 2, 8]  0.034939) 
    ([ 3, 8]  0.042465) 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    |              | 
    ([ 2, 9]  0.036006) 
    ([ 3, 9]  0.032208) 
    ([ 4, 9]  0.048691) 
  }
  From:  (3, 1)  {
    |              | 
    ([ 2, 1]  0.033232) 
    |              | 
    |              | 
    ([ 5, 1]  0.030370) 
  }
  From:  (3, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.035449)   }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.034806) 
    |              | 
    ([ 4, 3]  0.049637) 
    ([ 5, 3]  0.030401) 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.034413)   }
  From:  (3, 5)  {
    ([ 1, 5]  0.049305) 
    ([ 2, 5]  0.044955) 
    |              | 
    |              | 
    ([ 5, 5]  0.045812) 
  }
  From:  (3, 6)  {
    |              | 
    ([ 2, 6]  0.039616) 
    |              | 
    ([ 4, 6]  0.036576) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.049693) 
    ([ 2, 7]  0.036685) 
    |              | 
    |              | 
    ([ 5, 7]  0.046278) 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.030786) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 9)  {
    |              | 
    ([ 2, 9]  0.040778) 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 1]  0.031593) 
    ([ 6, 1]  0.033426) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.038583) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 3)  {
    ([ 2, 3]  0.030671) 
    ([ 3, 3]  0.030490) 
    ([ 4, 3]  0.042003) 
    ([ 5, 3]  0.046997) 
    |              | 
  }
  From:  (4, 4)  {
    |              | 
    ([ 3, 4]  0.038031) 
    |              | 
    |              | 
    ([ 6, 4]  0.039823) 
  }
  From:  (4, 5)  {
    ([ 2, 5]  0.045699) 
    ([ 3, 5]  0.049299) 
    ([ 4, 5]  0.049407) 
    ([ 5, 5]  0.040740) 
    ([ 6, 5]  0.039191) 
  }
  From:  (4, 6)  {
    |              | 
    ([ 3, 6]  0.039100) 
    ([ 4, 6]  0.030532) 
    |              | 
    |              | 
  }
  From:  (4, 7)  {
    |              | 
    |              | 
    ([ 4, 7]  0.040959) 
    ([ 5, 7]  0.045303) 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.044988) 
    ([ 3, 8]  0.039813) 
    ([ 4, 8]  0.035679) 
    |              | 
    |              | 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.030079) 
    ([ 3, 9]  0.049386) 
    |              | 
    ([ 5, 9]  0.043656) 
    |              | 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.031781) 
    ([ 4, 1]  0.046013) 
    ([ 5, 1]  0.049345) 
    |              | 
    |              | 
  }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.046269) 
    ([ 5, 2]  0.046491) 
    ([ 6, 2]  0.047596) 
    |              | 
  }
  From:  (5, 3)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 3]  0.041570) 
    |              | 
  }
  From:  (5, 4)  {
    ([ 3, 4]  0.034337) 
    |              | 
    ([ 5, 4]  0.040444) 
    |              | 
    |              | 
  }
  From:  (5, 5)  {
    |              | 
    ([ 4, 5]  0.042561) 
    |              | 
    ([ 6, 5]  0.047791) 
    ([ 7, 5]  0.039331) 
  }
  From:  (5, 6)  {
    |              | 
    ([ 4, 6]  0.030578) 
    ([ 5, 6]  0.047462) 
    ([ 6, 6]  0.038138) 
    ([ 7, 6]  0.036391) 
  }
  From:  (5, 7)  {
    |              | 
    |              | 
    ([ 5, 7]  0.044744) 
    |              | 
    ([ 7, 7]  0.044994) 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 8]  0.035982) 
    ([ 7, 8]  0.033927) 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.048307) 
    ([ 4, 9]  0.038426) 
    |              | 
    ([ 6, 9]  0.035271) 
    |              | 
  }
  From:  (6, 1)  {
    |              | 
    |              | 
    ([ 6, 1]  0.046513) 
    ([ 7, 1]  0.046577) 
    ([ 8, 1]  0.047339) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.037380) 
    ([ 6, 2]  0.036438) 
    |              | 
    ([ 8, 2]  0.047451) 
  }
  From:  (6, 3)  {
    ([ 4, 3]  0.049790) 
    |              | 
    ([ 6, 3]  0.041630) 
    ([ 7, 3]  0.047622) 
    |              | 
  }
  From:  (6, 4)  {
    |              | 
    ([ 5, 4]  0.049141) 
    ([ 6, 4]  0.036715) 
    |              | 
    ([ 8, 4]  0.040439) 
  }
  From:  (6, 5)  {
    ([ 4, 5]  0.047916) 
    ([ 5, 5]  0.049756) 
    |              | 
    ([ 7, 5]  0.031376) 
    ([ 8, 5]  0.042281) 
  }
  From:  (6, 6)  {
    |              | 
    |              | 
    ([ 6, 6]  0.037180) 
    ([ 7, 6]  0.049636) 
    ([ 8, 6]  0.041361) 
  }
  From:  (6, 7)  {
    ([ 4, 7]  0.046713) 
    ([ 5, 7]  0.049956) 
    |              | 
    ([ 7, 7]  0.032021) 
    ([ 8, 7]  0.045660) 
  }
  From:  (6, 8)  {
    |              | 
    |              | 
    ([ 6, 8]  0.043213) 
    |              | 
    ([ 8, 8]  0.035172) 
  }
  From:  (6, 9)  {
    ([ 4, 9]  0.039189) 
    ([ 5, 9]  0.046072) 
    ([ 6, 9]  0.031098) 
    |              | 
    ([ 8, 9]  0.044824) 
  }
  From:  (7, 1)  {
    |              | 
    |              | 
    ([ 7, 1]  0.039707) 
    ([ 8, 1]  0.031442) 
    ([ 9, 1]  0.031888) 
  }
  From:  (7, 2)  {
    ([ 5, 2]  0.034336) 
    ([ 6, 2]  0.033341) 
    ([ 7, 2]  0.045243) 
    ([ 8, 2]  0.039179) 
    |              | 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.030486) 
    ([ 6, 3]  0.045346) 
    ([ 7, 3]  0.035144) 
    |              | 
    ([ 9, 3]  0.033622) 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.042814) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    |              | 
    |              | 
    ([ 7, 5]  0.047288) 
    |              | 
    |              | 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.042963) 
    ([ 6, 6]  0.032890) 
    |              | 
    ([ 8, 6]  0.035351) 
    |              | 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.047362) 
    |              | 
    |              | 
    |              | 
    ([ 9, 7]  0.049810) 
  }
  From:  (7, 8)  {
    |              | 
    |              | 
    ([ 7, 8]  0.048721) 
    ([ 8, 8]  0.046396) 
    |              | 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.047365) 
    ([ 6, 9]  0.033349) 
    |              | 
    ([ 8, 9]  0.037379) 
    |              | 
  }
  From:  (8, 1)  {
    |              | 
    ([ 7, 1]  0.040482) 
    ([ 8, 1]  0.047024) 
    |              | 
    |              | 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    ([ 8, 2]  0.046842) 
    ([ 9, 2]  0.034428) 
    |              | 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.031582) 
    ([ 7, 3]  0.034083) 
    ([ 8, 3]  0.041165) 
    ([ 9, 3]  0.046289) 
    ([ 1, 3]  0.049310) 
  }
  From:  (8, 4)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 4]  0.047528) 
    ([ 1, 4]  0.039566) 
  }
  From:  (8, 5)  {
    ([ 6, 5]  0.049414) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 6)  {
    ([ 6, 6]  0.041527) 
    ([ 7, 6]  0.047411) 
    |              | 
    |              | 
    ([ 1, 6]  0.046332) 
  }
  From:  (8, 7)  {
    ([ 6, 7]  0.040071) 
    ([ 7, 7]  0.044312) 
    |              | 
    ([ 9, 7]  0.032015) 
    ([ 1, 7]  0.035075) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.031616) 
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.043905) 
  }
  From:  (8, 9)  {
    |              | 
    |              | 
    ([ 8, 9]  0.040569) 
    |              | 
    ([ 1, 9]  0.046932) 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.035813) 
    |              | 
    |              | 
    |              | 
    ([ 2, 1]  0.043703) 
  }
  From:  (9, 2)  {
    |              | 
    ([ 8, 2]  0.032266) 
    |              | 
    |              | 
    ([ 2, 2]  0.045118) 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.032007) 
    |              | 
    ([ 9, 3]  0.043122) 
    ([ 1, 3]  0.034894) 
    |              | 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.047441) 
    ([ 9, 4]  0.041957) 
    ([ 1, 4]  0.032396) 
    |              | 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.041985) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.048624) 
    ([ 8, 6]  0.030044) 
    ([ 9, 6]  0.036227) 
    ([ 1, 6]  0.046223) 
    ([ 2, 6]  0.037450) 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.047914) 
    ([ 9, 7]  0.039477) 
    |              | 
    |              | 
  }
  From:  (9, 8)  {
    ([ 7, 8]  0.047216) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 9)  {
    ([ 7, 9]  0.039754) 
    |              | 
    ([ 9, 9]  0.041412) 
    |              | 
    |              | 
  }
}

Loading data, please wait...