Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_14
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Thu Nov 19 06:28:29 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    ([ 8, 1]  0.039194) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.037241)   }
  From:  (1, 3)  {
    |              | 
    |              | 
    ([ 1, 3]  0.049853) 
    |              | 
    ([ 3, 3]  0.032926) 
  }
  From:  (1, 4)  {
    |              | 
    ([ 9, 4]  0.036754) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 5]  0.044394) 
    ([ 3, 5]  0.040061) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    ([ 1, 6]  0.042859) 
    ([ 2, 6]  0.042297) 
    ([ 3, 6]  0.034807) 
  }
  From:  (1, 7)  {
    ([ 8, 7]  0.034099) 
    ([ 9, 7]  0.035303) 
    |              | 
    ([ 2, 7]  0.047063) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.039108) 
    |              | 
    ([ 1, 8]  0.033767) 
    |              | 
    ([ 3, 8]  0.040709) 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.033374) 
    ([ 9, 9]  0.049125) 
    |              | 
    ([ 2, 9]  0.040292) 
    ([ 3, 9]  0.030286) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.047948) 
    |              | 
    |              | 
    ([ 4, 1]  0.032845) 
  }
  From:  (2, 2)  {
    |              | 
    ([ 1, 2]  0.036403) 
    ([ 2, 2]  0.041812) 
    ([ 3, 2]  0.039715) 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.035380) 
    ([ 1, 3]  0.048933) 
    ([ 2, 3]  0.030759) 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 4, 4]  0.044886) 
  }
  From:  (2, 5)  {
    ([ 9, 5]  0.030974) 
    ([ 1, 5]  0.042386) 
    ([ 2, 5]  0.039096) 
    |              | 
    |              | 
  }
  From:  (2, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.043903)   }
  From:  (2, 7)  {
    |              | 
    ([ 1, 7]  0.045362) 
    |              | 
    |              | 
    ([ 4, 7]  0.039814) 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.045786)   }
  From:  (2, 9)  {
    ([ 9, 9]  0.036550) 
    ([ 1, 9]  0.042074) 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 1)  {
    |              | 
    |              | 
    ([ 3, 1]  0.036475) 
    ([ 4, 1]  0.049768) 
    |              | 
  }
  From:  (3, 2)  {
    |              | 
    |              | 
    ([ 3, 2]  0.046870) 
    |              | 
    |              | 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.031656) 
    ([ 3, 3]  0.043014) 
    ([ 4, 3]  0.036307) 
    ([ 5, 3]  0.034202) 
  }
  From:  (3, 4)  {
    ([ 1, 4]  0.046687) 
    ([ 2, 4]  0.039206) 
    ([ 3, 4]  0.035549) 
    |              | 
    |              | 
  }
  From:  (3, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 4, 5]  0.037962) 
    |              | 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.036912) 
    |              | 
    |              | 
    ([ 4, 6]  0.042454) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.037487) 
    ([ 2, 7]  0.043108) 
    ([ 3, 7]  0.041057) 
    ([ 4, 7]  0.048070) 
    ([ 5, 7]  0.042528) 
  }
  From:  (3, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.041666)   }
  From:  (3, 9)  {
    ([ 1, 9]  0.049888) 
    ([ 2, 9]  0.042480) 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    ([ 3, 1]  0.048155) 
    |              | 
    |              | 
    ([ 6, 1]  0.033895) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.041070) 
    |              | 
    |              | 
    ([ 5, 2]  0.034028) 
    |              | 
  }
  From:  (4, 3)  {
    |              | 
    ([ 3, 3]  0.043273) 
    |              | 
    ([ 5, 3]  0.041910) 
    |              | 
  }
  From:  (4, 4)  {
    ([ 2, 4]  0.037972) 
    |              | 
    |              | 
    ([ 5, 4]  0.043863) 
    |              | 
  }
  From:  (4, 5)  {
    |              | 
    ([ 3, 5]  0.031639) 
    |              | 
    ([ 5, 5]  0.036064) 
    |              | 
  }
  From:  (4, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 6]  0.048723) 
  }
  From:  (4, 7)  {
    |              | 
    ([ 3, 7]  0.036943) 
    |              | 
    ([ 5, 7]  0.037602) 
    |              | 
  }
  From:  (4, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.033810)   }
  From:  (4, 9)  {
    |              | 
    ([ 3, 9]  0.032833) 
    |              | 
    ([ 5, 9]  0.031064) 
    ([ 6, 9]  0.039713) 
  }
  From:  (5, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.039827)   }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.041377) 
    ([ 5, 2]  0.046737) 
    ([ 6, 2]  0.039752) 
    |              | 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.038734) 
    ([ 4, 3]  0.049286) 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.041634)   }
  From:  (5, 5)  {
    |              | 
    ([ 4, 5]  0.038756) 
    |              | 
    ([ 6, 5]  0.030435) 
    |              | 
  }
  From:  (5, 6)  {
    |              | 
    |              | 
    ([ 5, 6]  0.045295) 
    ([ 6, 6]  0.038885) 
    |              | 
  }
  From:  (5, 7)  {
    |              | 
    ([ 4, 7]  0.039098) 
    ([ 5, 7]  0.039408) 
    ([ 6, 7]  0.048717) 
    ([ 7, 7]  0.044156) 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.031780)   }
  From:  (5, 9)  {
    ([ 3, 9]  0.045089) 
    ([ 4, 9]  0.032775) 
    |              | 
    ([ 6, 9]  0.041584) 
    |              | 
  }
  From:  (6, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 8, 1]  0.046544) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.034236) 
    ([ 6, 2]  0.035377) 
    ([ 7, 2]  0.048789) 
    ([ 8, 2]  0.033753) 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.031346) 
    |              | 
    ([ 8, 3]  0.042459) 
  }
  From:  (6, 4)  {
    ([ 4, 4]  0.043921) 
    |              | 
    ([ 6, 4]  0.035875) 
    ([ 7, 4]  0.046521) 
    |              | 
  }
  From:  (6, 5)  {
    |              | 
    |              | 
    ([ 6, 5]  0.047646) 
    |              | 
    |              | 
  }
  From:  (6, 6)  {
    ([ 4, 6]  0.033114) 
    |              | 
    ([ 6, 6]  0.046413) 
    ([ 7, 6]  0.042824) 
    ([ 8, 6]  0.041472) 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.032205) 
    |              | 
    ([ 7, 7]  0.033083) 
    |              | 
  }
  From:  (6, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 8]  0.045660) 
    |              | 
  }
  From:  (6, 9)  {
    |              | 
    ([ 5, 9]  0.033520) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 1)  {
    |              | 
    ([ 6, 1]  0.032272) 
    ([ 7, 1]  0.032270) 
    |              | 
    |              | 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    ([ 7, 2]  0.036741) 
    |              | 
    ([ 9, 2]  0.030756) 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.035872) 
    ([ 6, 3]  0.045113) 
    ([ 7, 3]  0.034483) 
    ([ 8, 3]  0.048513) 
    ([ 9, 3]  0.031207) 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.033323) 
    |              | 
    ([ 7, 4]  0.039241) 
    ([ 8, 4]  0.045036) 
    |              | 
  }
  From:  (7, 5)  {
    ([ 5, 5]  0.036734) 
    ([ 6, 5]  0.033869) 
    ([ 7, 5]  0.046316) 
    |              | 
    ([ 9, 5]  0.035756) 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.037048) 
    ([ 6, 6]  0.045505) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.044362) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.043469) 
    |              | 
    ([ 7, 8]  0.039731) 
    ([ 8, 8]  0.048566) 
    |              | 
  }
  From:  (7, 9)  {
    |              | 
    ([ 6, 9]  0.042807) 
    |              | 
    |              | 
    ([ 9, 9]  0.038764) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.047666) 
    |              | 
    ([ 8, 1]  0.044266) 
    |              | 
    ([ 1, 1]  0.034215) 
  }
  From:  (8, 2)  {
    ([ 6, 2]  0.040426) 
    ([ 7, 2]  0.031023) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.030605) 
    |              | 
    ([ 8, 3]  0.046368) 
    |              | 
    |              | 
  }
  From:  (8, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.045783)   }
  From:  (8, 5)  {
    ([ 6, 5]  0.034770) 
    |              | 
    |              | 
    ([ 9, 5]  0.034801) 
    |              | 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.033125) 
    ([ 1, 6]  0.035615) 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 7]  0.049846) 
  }
  From:  (8, 8)  {
    |              | 
    ([ 7, 8]  0.046053) 
    |              | 
    ([ 9, 8]  0.047745) 
    |              | 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.047267) 
    ([ 7, 9]  0.045919) 
    ([ 8, 9]  0.043350) 
    |              | 
    |              | 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.048784) 
    |              | 
    |              | 
    |              | 
    ([ 2, 1]  0.049697) 
  }
  From:  (9, 2)  {
    |              | 
    ([ 8, 2]  0.037053) 
    ([ 9, 2]  0.034387) 
    ([ 1, 2]  0.048929) 
    |              | 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.041072) 
    ([ 8, 3]  0.046028) 
    |              | 
    ([ 1, 3]  0.042349) 
    |              | 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.032442) 
    |              | 
    ([ 1, 4]  0.030164) 
    |              | 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.036076) 
    |              | 
    |              | 
    ([ 1, 5]  0.047419) 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.044019) 
    ([ 8, 6]  0.048056) 
    ([ 9, 6]  0.039476) 
    |              | 
    |              | 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.037868) 
    |              | 
    ([ 1, 7]  0.044308) 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    ([ 8, 8]  0.042463) 
    ([ 9, 8]  0.030159) 
    |              | 
    |              | 
  }
  From:  (9, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 9]  0.048495) 
    ([ 2, 9]  0.046715) 
  }
}

Loading data, please wait...