Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_14
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Thu Nov 19 06:28:29 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4v, ev1v)  {
  From:  (1, 1)  {
    ([ 8, 1]  0.000919) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000724)   }
  From:  (1, 3)  {
    |              | 
    |              | 
    ([ 1, 3]  0.001985) 
    |              | 
    ([ 3, 3]  0.000293) 
  }
  From:  (1, 4)  {
    |              | 
    ([ 9, 4]  0.000675) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 5]  0.001439) 
    ([ 3, 5]  0.001006) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    ([ 1, 6]  0.001286) 
    ([ 2, 6]  0.001230) 
    ([ 3, 6]  0.000481) 
  }
  From:  (1, 7)  {
    ([ 8, 7]  0.000410) 
    ([ 9, 7]  0.000530) 
    |              | 
    ([ 2, 7]  0.001706) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.000911) 
    |              | 
    ([ 1, 8]  0.000377) 
    |              | 
    ([ 3, 8]  0.001071) 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.000337) 
    ([ 9, 9]  0.001913) 
    |              | 
    ([ 2, 9]  0.001029) 
    ([ 3, 9]  0.000029) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.001795) 
    |              | 
    |              | 
    ([ 4, 1]  0.000285) 
  }
  From:  (2, 2)  {
    |              | 
    ([ 1, 2]  0.000640) 
    ([ 2, 2]  0.001181) 
    ([ 3, 2]  0.000971) 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.000538) 
    ([ 1, 3]  0.001893) 
    ([ 2, 3]  0.000076) 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 4, 4]  0.001489) 
  }
  From:  (2, 5)  {
    ([ 9, 5]  0.000097) 
    ([ 1, 5]  0.001239) 
    ([ 2, 5]  0.000910) 
    |              | 
    |              | 
  }
  From:  (2, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001390)   }
  From:  (2, 7)  {
    |              | 
    ([ 1, 7]  0.001536) 
    |              | 
    |              | 
    ([ 4, 7]  0.000981) 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001579)   }
  From:  (2, 9)  {
    ([ 9, 9]  0.000655) 
    ([ 1, 9]  0.001207) 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 1)  {
    |              | 
    |              | 
    ([ 3, 1]  0.000648) 
    ([ 4, 1]  0.001977) 
    |              | 
  }
  From:  (3, 2)  {
    |              | 
    |              | 
    ([ 3, 2]  0.001687) 
    |              | 
    |              | 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.000166) 
    ([ 3, 3]  0.001301) 
    ([ 4, 3]  0.000631) 
    ([ 5, 3]  0.000420) 
  }
  From:  (3, 4)  {
    ([ 1, 4]  0.001669) 
    ([ 2, 4]  0.000921) 
    ([ 3, 4]  0.000555) 
    |              | 
    |              | 
  }
  From:  (3, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 4, 5]  0.000796) 
    |              | 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.000691) 
    |              | 
    |              | 
    ([ 4, 6]  0.001245) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.000749) 
    ([ 2, 7]  0.001311) 
    ([ 3, 7]  0.001106) 
    ([ 4, 7]  0.001807) 
    ([ 5, 7]  0.001253) 
  }
  From:  (3, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001167)   }
  From:  (3, 9)  {
    ([ 1, 9]  0.001989) 
    ([ 2, 9]  0.001248) 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    ([ 3, 1]  0.001816) 
    |              | 
    |              | 
    ([ 6, 1]  0.000389) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.001107) 
    |              | 
    |              | 
    ([ 5, 2]  0.000403) 
    |              | 
  }
  From:  (4, 3)  {
    |              | 
    ([ 3, 3]  0.001327) 
    |              | 
    ([ 5, 3]  0.001191) 
    |              | 
  }
  From:  (4, 4)  {
    ([ 2, 4]  0.000797) 
    |              | 
    |              | 
    ([ 5, 4]  0.001386) 
    |              | 
  }
  From:  (4, 5)  {
    |              | 
    ([ 3, 5]  0.000164) 
    |              | 
    ([ 5, 5]  0.000606) 
    |              | 
  }
  From:  (4, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 6]  0.001872) 
  }
  From:  (4, 7)  {
    |              | 
    ([ 3, 7]  0.000694) 
    |              | 
    ([ 5, 7]  0.000760) 
    |              | 
  }
  From:  (4, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000381)   }
  From:  (4, 9)  {
    |              | 
    ([ 3, 9]  0.000283) 
    |              | 
    ([ 5, 9]  0.000106) 
    ([ 6, 9]  0.000971) 
  }
  From:  (5, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000983)   }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.001138) 
    ([ 5, 2]  0.001674) 
    ([ 6, 2]  0.000975) 
    |              | 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.000873) 
    ([ 4, 3]  0.001929) 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001163)   }
  From:  (5, 5)  {
    |              | 
    ([ 4, 5]  0.000876) 
    |              | 
    ([ 6, 5]  0.000044) 
    |              | 
  }
  From:  (5, 6)  {
    |              | 
    |              | 
    ([ 5, 6]  0.001530) 
    ([ 6, 6]  0.000888) 
    |              | 
  }
  From:  (5, 7)  {
    |              | 
    ([ 4, 7]  0.000910) 
    ([ 5, 7]  0.000941) 
    ([ 6, 7]  0.001872) 
    ([ 7, 7]  0.001416) 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000178)   }
  From:  (5, 9)  {
    ([ 3, 9]  0.001509) 
    ([ 4, 9]  0.000278) 
    |              | 
    ([ 6, 9]  0.001158) 
    |              | 
  }
  From:  (6, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 8, 1]  0.001654) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.000424) 
    ([ 6, 2]  0.000538) 
    ([ 7, 2]  0.001879) 
    ([ 8, 2]  0.000375) 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.000135) 
    |              | 
    ([ 8, 3]  0.001246) 
  }
  From:  (6, 4)  {
    ([ 4, 4]  0.001392) 
    |              | 
    ([ 6, 4]  0.000588) 
    ([ 7, 4]  0.001652) 
    |              | 
  }
  From:  (6, 5)  {
    |              | 
    |              | 
    ([ 6, 5]  0.001765) 
    |              | 
    |              | 
  }
  From:  (6, 6)  {
    ([ 4, 6]  0.000311) 
    |              | 
    ([ 6, 6]  0.001641) 
    ([ 7, 6]  0.001282) 
    ([ 8, 6]  0.001147) 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.000220) 
    |              | 
    ([ 7, 7]  0.000308) 
    |              | 
  }
  From:  (6, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 8]  0.001566) 
    |              | 
  }
  From:  (6, 9)  {
    |              | 
    ([ 5, 9]  0.000352) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 1)  {
    |              | 
    ([ 6, 1]  0.000227) 
    ([ 7, 1]  0.000227) 
    |              | 
    |              | 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    ([ 7, 2]  0.000674) 
    |              | 
    ([ 9, 2]  0.000076) 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.000587) 
    ([ 6, 3]  0.001511) 
    ([ 7, 3]  0.000448) 
    ([ 8, 3]  0.001851) 
    ([ 9, 3]  0.000121) 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.000332) 
    |              | 
    ([ 7, 4]  0.000924) 
    ([ 8, 4]  0.001504) 
    |              | 
  }
  From:  (7, 5)  {
    ([ 5, 5]  0.000673) 
    ([ 6, 5]  0.000387) 
    ([ 7, 5]  0.001632) 
    |              | 
    ([ 9, 5]  0.000576) 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.000705) 
    ([ 6, 6]  0.001551) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.001436) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.001347) 
    |              | 
    ([ 7, 8]  0.000973) 
    ([ 8, 8]  0.001857) 
    |              | 
  }
  From:  (7, 9)  {
    |              | 
    ([ 6, 9]  0.001281) 
    |              | 
    |              | 
    ([ 9, 9]  0.000876) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.001767) 
    |              | 
    ([ 8, 1]  0.001427) 
    |              | 
    ([ 1, 1]  0.000422) 
  }
  From:  (8, 2)  {
    ([ 6, 2]  0.001043) 
    ([ 7, 2]  0.000102) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.000061) 
    |              | 
    ([ 8, 3]  0.001637) 
    |              | 
    |              | 
  }
  From:  (8, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001578)   }
  From:  (8, 5)  {
    ([ 6, 5]  0.000477) 
    |              | 
    |              | 
    ([ 9, 5]  0.000480) 
    |              | 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.000313) 
    ([ 1, 6]  0.000561) 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 7]  0.001985) 
  }
  From:  (8, 8)  {
    |              | 
    ([ 7, 8]  0.001605) 
    |              | 
    ([ 9, 8]  0.001774) 
    |              | 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.001727) 
    ([ 7, 9]  0.001592) 
    ([ 8, 9]  0.001335) 
    |              | 
    |              | 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.001878) 
    |              | 
    |              | 
    |              | 
    ([ 2, 1]  0.001970) 
  }
  From:  (9, 2)  {
    |              | 
    ([ 8, 2]  0.000705) 
    ([ 9, 2]  0.000439) 
    ([ 1, 2]  0.001893) 
    |              | 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.001107) 
    ([ 8, 3]  0.001603) 
    |              | 
    ([ 1, 3]  0.001235) 
    |              | 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.000244) 
    |              | 
    ([ 1, 4]  0.000016) 
    |              | 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.000608) 
    |              | 
    |              | 
    ([ 1, 5]  0.001742) 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.001402) 
    ([ 8, 6]  0.001806) 
    ([ 9, 6]  0.000948) 
    |              | 
    |              | 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.000787) 
    |              | 
    ([ 1, 7]  0.001431) 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    ([ 8, 8]  0.001246) 
    ([ 9, 8]  0.000016) 
    |              | 
    |              | 
  }
  From:  (9, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 9]  0.001849) 
    ([ 2, 9]  0.001671) 
  }
}

Loading data, please wait...