Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_15
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Thu Nov 19 22:10:16 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    |              | 
    ([ 9, 1]  0.041462) 
    ([ 1, 1]  0.047357) 
    ([ 2, 1]  0.043547) 
    ([ 3, 1]  0.049924) 
  }
  From:  (1, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 2]  0.037558) 
  }
  From:  (1, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 3]  0.036185) 
  }
  From:  (1, 4)  {
    |              | 
    ([ 9, 4]  0.030559) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.044476) 
    ([ 9, 5]  0.034113) 
    |              | 
    ([ 2, 5]  0.032018) 
    ([ 3, 5]  0.038503) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.046021)   }
  From:  (1, 7)  {
    ([ 8, 7]  0.031723) 
    ([ 9, 7]  0.045442) 
    ([ 1, 7]  0.031031) 
    |              | 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.036240) 
    ([ 9, 8]  0.049798) 
    ([ 1, 8]  0.039385) 
    |              | 
    ([ 3, 8]  0.049351) 
  }
  From:  (1, 9)  {
    |              | 
    ([ 9, 9]  0.039463) 
    |              | 
    |              | 
    ([ 3, 9]  0.048004) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.043498) 
    |              | 
    ([ 3, 1]  0.035839) 
    ([ 4, 1]  0.049148) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.049616) 
    ([ 1, 2]  0.034749) 
    ([ 2, 2]  0.042095) 
    ([ 3, 2]  0.034185) 
    ([ 4, 2]  0.033884) 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.038981) 
    |              | 
    ([ 2, 3]  0.045840) 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    ([ 1, 4]  0.048952) 
    |              | 
    ([ 3, 4]  0.041364) 
    ([ 4, 4]  0.030093) 
  }
  From:  (2, 5)  {
    |              | 
    |              | 
    ([ 2, 5]  0.031323) 
    ([ 3, 5]  0.041092) 
    ([ 4, 5]  0.049917) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.031865) 
    ([ 1, 6]  0.032734) 
    |              | 
    ([ 3, 6]  0.041251) 
    ([ 4, 6]  0.047750) 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.042231) 
    ([ 1, 7]  0.042623) 
    ([ 2, 7]  0.047238) 
    |              | 
    ([ 4, 7]  0.048364) 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 8]  0.035601) 
    ([ 4, 8]  0.031518) 
  }
  From:  (2, 9)  {
    ([ 9, 9]  0.049624) 
    |              | 
    |              | 
    ([ 3, 9]  0.035938) 
    |              | 
  }
  From:  (3, 1)  {
    ([ 1, 1]  0.032347) 
    ([ 2, 1]  0.030962) 
    |              | 
    ([ 4, 1]  0.049943) 
    |              | 
  }
  From:  (3, 2)  {
    |              | 
    ([ 2, 2]  0.047328) 
    |              | 
    ([ 4, 2]  0.043016) 
    ([ 5, 2]  0.045336) 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.035062) 
    |              | 
    |              | 
    ([ 5, 3]  0.041066) 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    ([ 3, 4]  0.036180) 
    ([ 4, 4]  0.030013) 
    |              | 
  }
  From:  (3, 5)  {
    ([ 1, 5]  0.042620) 
    |              | 
    ([ 3, 5]  0.034897) 
    ([ 4, 5]  0.035059) 
    ([ 5, 5]  0.043139) 
  }
  From:  (3, 6)  {
    |              | 
    ([ 2, 6]  0.031233) 
    |              | 
    ([ 4, 6]  0.047617) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.031847) 
    ([ 2, 7]  0.045826) 
    |              | 
    |              | 
    ([ 5, 7]  0.030566) 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.032984) 
    ([ 2, 8]  0.045401) 
    |              | 
    ([ 4, 8]  0.041361) 
    |              | 
  }
  From:  (3, 9)  {
    |              | 
    |              | 
    ([ 3, 9]  0.045317) 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    ([ 2, 1]  0.049754) 
    ([ 3, 1]  0.031624) 
    |              | 
    ([ 5, 1]  0.030551) 
    ([ 6, 1]  0.033851) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.031103) 
    |              | 
    |              | 
    |              | 
    ([ 6, 2]  0.040891) 
  }
  From:  (4, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.042598)   }
  From:  (4, 4)  {
    |              | 
    |              | 
    ([ 4, 4]  0.041007) 
    |              | 
    ([ 6, 4]  0.039505) 
  }
  From:  (4, 5)  {
    |              | 
    ([ 3, 5]  0.049840) 
    |              | 
    ([ 5, 5]  0.038434) 
    |              | 
  }
  From:  (4, 6)  {
    |              | 
    ([ 3, 6]  0.039879) 
    |              | 
    |              | 
    ([ 6, 6]  0.038715) 
  }
  From:  (4, 7)  {
    ([ 2, 7]  0.033251) 
    ([ 3, 7]  0.041218) 
    ([ 4, 7]  0.043994) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.034437) 
    ([ 3, 8]  0.034939) 
    |              | 
    ([ 5, 8]  0.035385) 
    |              | 
  }
  From:  (4, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 9]  0.035825) 
    ([ 6, 9]  0.035086) 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.040892) 
    |              | 
    ([ 5, 1]  0.041908) 
    ([ 6, 1]  0.036723) 
    |              | 
  }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.042962) 
    |              | 
    |              | 
    ([ 7, 2]  0.037866) 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.040142) 
    |              | 
    |              | 
    |              | 
    ([ 7, 3]  0.037818) 
  }
  From:  (5, 4)  {
    |              | 
    |              | 
    ([ 5, 4]  0.046856) 
    |              | 
    ([ 7, 4]  0.030700) 
  }
  From:  (5, 5)  {
    ([ 3, 5]  0.037455) 
    ([ 4, 5]  0.032946) 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 6)  {
    ([ 3, 6]  0.048495) 
    |              | 
    ([ 5, 6]  0.048798) 
    ([ 6, 6]  0.030201) 
    |              | 
  }
  From:  (5, 7)  {
    ([ 3, 7]  0.039941) 
    |              | 
    ([ 5, 7]  0.032166) 
    |              | 
    |              | 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    ([ 5, 8]  0.031047) 
    ([ 6, 8]  0.049251) 
    |              | 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.033988) 
    |              | 
    |              | 
    |              | 
    ([ 7, 9]  0.041579) 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.035884) 
    ([ 5, 1]  0.037402) 
    |              | 
    |              | 
    ([ 8, 1]  0.039781) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.034875) 
    ([ 6, 2]  0.044048) 
    |              | 
    |              | 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.040018) 
    |              | 
    ([ 8, 3]  0.046614) 
  }
  From:  (6, 4)  {
    |              | 
    ([ 5, 4]  0.049863) 
    |              | 
    |              | 
    |              | 
  }
  From:  (6, 5)  {
    |              | 
    ([ 5, 5]  0.037017) 
    ([ 6, 5]  0.036660) 
    ([ 7, 5]  0.044258) 
    ([ 8, 5]  0.033372) 
  }
  From:  (6, 6)  {
    |              | 
    ([ 5, 6]  0.044287) 
    ([ 6, 6]  0.041701) 
    ([ 7, 6]  0.039329) 
    ([ 8, 6]  0.043626) 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.043702) 
    ([ 6, 7]  0.033076) 
    ([ 7, 7]  0.035211) 
    |              | 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.047119) 
    |              | 
    ([ 6, 8]  0.035394) 
    |              | 
    ([ 8, 8]  0.031112) 
  }
  From:  (6, 9)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 8, 9]  0.035960) 
  }
  From:  (7, 1)  {
    ([ 5, 1]  0.049350) 
    ([ 6, 1]  0.042248) 
    |              | 
    ([ 8, 1]  0.040782) 
    ([ 9, 1]  0.047895) 
  }
  From:  (7, 2)  {
    |              | 
    ([ 6, 2]  0.049523) 
    ([ 7, 2]  0.038353) 
    |              | 
    ([ 9, 2]  0.034307) 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.034071) 
    |              | 
    |              | 
    ([ 8, 3]  0.030040) 
    |              | 
  }
  From:  (7, 4)  {
    |              | 
    ([ 6, 4]  0.030753) 
    ([ 7, 4]  0.045300) 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    |              | 
    ([ 6, 5]  0.036095) 
    |              | 
    ([ 8, 5]  0.041276) 
    ([ 9, 5]  0.038897) 
  }
  From:  (7, 6)  {
    |              | 
    |              | 
    ([ 7, 6]  0.040212) 
    |              | 
    ([ 9, 6]  0.044864) 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.040706) 
    |              | 
    |              | 
    ([ 8, 7]  0.039080) 
    ([ 9, 7]  0.045392) 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.047391) 
    |              | 
    ([ 7, 8]  0.033323) 
    ([ 8, 8]  0.048371) 
    |              | 
  }
  From:  (7, 9)  {
    |              | 
    ([ 6, 9]  0.037072) 
    |              | 
    |              | 
    ([ 9, 9]  0.043833) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.030103) 
    |              | 
    |              | 
    ([ 9, 1]  0.034777) 
    ([ 1, 1]  0.033745) 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 2]  0.035825) 
    ([ 1, 2]  0.039949) 
  }
  From:  (8, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.047966)   }
  From:  (8, 4)  {
    ([ 6, 4]  0.049058) 
    |              | 
    ([ 8, 4]  0.036171) 
    |              | 
    ([ 1, 4]  0.048671) 
  }
  From:  (8, 5)  {
    |              | 
    ([ 7, 5]  0.040290) 
    ([ 8, 5]  0.045437) 
    ([ 9, 5]  0.042156) 
    |              | 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.037395) 
    ([ 1, 6]  0.042870) 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 7]  0.049332) 
  }
  From:  (8, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.042674) 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.037428) 
    ([ 7, 9]  0.045444) 
    ([ 8, 9]  0.036784) 
    |              | 
    ([ 1, 9]  0.042703) 
  }
  From:  (9, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.030102) 
    ([ 2, 1]  0.041558) 
  }
  From:  (9, 2)  {
    |              | 
    |              | 
    ([ 9, 2]  0.038941) 
    |              | 
    ([ 2, 2]  0.042690) 
  }
  From:  (9, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 2, 3]  0.035723) 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.040154) 
    |              | 
    ([ 1, 4]  0.037182) 
    |              | 
  }
  From:  (9, 5)  {
    |              | 
    ([ 8, 5]  0.048643) 
    ([ 9, 5]  0.042217) 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.045713) 
    ([ 8, 6]  0.031850) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.044595) 
    ([ 9, 7]  0.037004) 
    |              | 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    ([ 8, 8]  0.040845) 
    |              | 
    ([ 1, 8]  0.032132) 
    |              | 
  }
  From:  (9, 9)  {
    ([ 7, 9]  0.047043) 
    ([ 8, 9]  0.042758) 
    |              | 
    ([ 1, 9]  0.046265) 
    |              | 
  }
}

Loading data, please wait...