ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206337.

Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_15
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Thu Nov 19 22:10:16 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4v, ev1v)  {
  From:  (1, 1)  {
    |              | 
    ([ 9, 1]  0.001146) 
    ([ 1, 1]  0.001736) 
    ([ 2, 1]  0.001355) 
    ([ 3, 1]  0.001992) 
  }
  From:  (1, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 2]  0.000756) 
  }
  From:  (1, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 3]  0.000618) 
  }
  From:  (1, 4)  {
    |              | 
    ([ 9, 4]  0.000056) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.001448) 
    ([ 9, 5]  0.000411) 
    |              | 
    ([ 2, 5]  0.000202) 
    ([ 3, 5]  0.000850) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001602)   }
  From:  (1, 7)  {
    ([ 8, 7]  0.000172) 
    ([ 9, 7]  0.001544) 
    ([ 1, 7]  0.000103) 
    |              | 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.000624) 
    ([ 9, 8]  0.001980) 
    ([ 1, 8]  0.000939) 
    |              | 
    ([ 3, 8]  0.001935) 
  }
  From:  (1, 9)  {
    |              | 
    ([ 9, 9]  0.000946) 
    |              | 
    |              | 
    ([ 3, 9]  0.001800) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.001350) 
    |              | 
    ([ 3, 1]  0.000584) 
    ([ 4, 1]  0.001915) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.001962) 
    ([ 1, 2]  0.000475) 
    ([ 2, 2]  0.001210) 
    ([ 3, 2]  0.000419) 
    ([ 4, 2]  0.000388) 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.000898) 
    |              | 
    ([ 2, 3]  0.001584) 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    ([ 1, 4]  0.001895) 
    |              | 
    ([ 3, 4]  0.001136) 
    ([ 4, 4]  0.000009) 
  }
  From:  (2, 5)  {
    |              | 
    |              | 
    ([ 2, 5]  0.000132) 
    ([ 3, 5]  0.001109) 
    ([ 4, 5]  0.001992) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.000187) 
    ([ 1, 6]  0.000273) 
    |              | 
    ([ 3, 6]  0.001125) 
    ([ 4, 6]  0.001775) 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.001223) 
    ([ 1, 7]  0.001262) 
    ([ 2, 7]  0.001724) 
    |              | 
    ([ 4, 7]  0.001836) 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 8]  0.000560) 
    ([ 4, 8]  0.000152) 
  }
  From:  (2, 9)  {
    ([ 9, 9]  0.001962) 
    |              | 
    |              | 
    ([ 3, 9]  0.000594) 
    |              | 
  }
  From:  (3, 1)  {
    ([ 1, 1]  0.000235) 
    ([ 2, 1]  0.000096) 
    |              | 
    ([ 4, 1]  0.001994) 
    |              | 
  }
  From:  (3, 2)  {
    |              | 
    ([ 2, 2]  0.001733) 
    |              | 
    ([ 4, 2]  0.001302) 
    ([ 5, 2]  0.001534) 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.000506) 
    |              | 
    |              | 
    ([ 5, 3]  0.001107) 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    ([ 3, 4]  0.000618) 
    ([ 4, 4]  0.000001) 
    |              | 
  }
  From:  (3, 5)  {
    ([ 1, 5]  0.001262) 
    |              | 
    ([ 3, 5]  0.000490) 
    ([ 4, 5]  0.000506) 
    ([ 5, 5]  0.001314) 
  }
  From:  (3, 6)  {
    |              | 
    ([ 2, 6]  0.000123) 
    |              | 
    ([ 4, 6]  0.001762) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.000185) 
    ([ 2, 7]  0.001583) 
    |              | 
    |              | 
    ([ 5, 7]  0.000057) 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.000298) 
    ([ 2, 8]  0.001540) 
    |              | 
    ([ 4, 8]  0.001136) 
    |              | 
  }
  From:  (3, 9)  {
    |              | 
    |              | 
    ([ 3, 9]  0.001532) 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    ([ 2, 1]  0.001975) 
    ([ 3, 1]  0.000162) 
    |              | 
    ([ 5, 1]  0.000055) 
    ([ 6, 1]  0.000385) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.000110) 
    |              | 
    |              | 
    |              | 
    ([ 6, 2]  0.001089) 
  }
  From:  (4, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001260)   }
  From:  (4, 4)  {
    |              | 
    |              | 
    ([ 4, 4]  0.001101) 
    |              | 
    ([ 6, 4]  0.000950) 
  }
  From:  (4, 5)  {
    |              | 
    ([ 3, 5]  0.001984) 
    |              | 
    ([ 5, 5]  0.000843) 
    |              | 
  }
  From:  (4, 6)  {
    |              | 
    ([ 3, 6]  0.000988) 
    |              | 
    |              | 
    ([ 6, 6]  0.000871) 
  }
  From:  (4, 7)  {
    ([ 2, 7]  0.000325) 
    ([ 3, 7]  0.001122) 
    ([ 4, 7]  0.001399) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.000444) 
    ([ 3, 8]  0.000494) 
    |              | 
    ([ 5, 8]  0.000538) 
    |              | 
  }
  From:  (4, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 9]  0.000583) 
    ([ 6, 9]  0.000509) 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.001089) 
    |              | 
    ([ 5, 1]  0.001191) 
    ([ 6, 1]  0.000672) 
    |              | 
  }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.001296) 
    |              | 
    |              | 
    ([ 7, 2]  0.000787) 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.001014) 
    |              | 
    |              | 
    |              | 
    ([ 7, 3]  0.000782) 
  }
  From:  (5, 4)  {
    |              | 
    |              | 
    ([ 5, 4]  0.001686) 
    |              | 
    ([ 7, 4]  0.000070) 
  }
  From:  (5, 5)  {
    ([ 3, 5]  0.000745) 
    ([ 4, 5]  0.000295) 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 6)  {
    ([ 3, 6]  0.001849) 
    |              | 
    ([ 5, 6]  0.001880) 
    ([ 6, 6]  0.000020) 
    |              | 
  }
  From:  (5, 7)  {
    ([ 3, 7]  0.000994) 
    |              | 
    ([ 5, 7]  0.000217) 
    |              | 
    |              | 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    ([ 5, 8]  0.000105) 
    ([ 6, 8]  0.001925) 
    |              | 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.000399) 
    |              | 
    |              | 
    |              | 
    ([ 7, 9]  0.001158) 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.000588) 
    ([ 5, 1]  0.000740) 
    |              | 
    |              | 
    ([ 8, 1]  0.000978) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.000487) 
    ([ 6, 2]  0.001405) 
    |              | 
    |              | 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.001002) 
    |              | 
    ([ 8, 3]  0.001661) 
  }
  From:  (6, 4)  {
    |              | 
    ([ 5, 4]  0.001986) 
    |              | 
    |              | 
    |              | 
  }
  From:  (6, 5)  {
    |              | 
    ([ 5, 5]  0.000702) 
    ([ 6, 5]  0.000666) 
    ([ 7, 5]  0.001426) 
    ([ 8, 5]  0.000337) 
  }
  From:  (6, 6)  {
    |              | 
    ([ 5, 6]  0.001429) 
    ([ 6, 6]  0.001170) 
    ([ 7, 6]  0.000933) 
    ([ 8, 6]  0.001363) 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.001370) 
    ([ 6, 7]  0.000308) 
    ([ 7, 7]  0.000521) 
    |              | 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.001712) 
    |              | 
    ([ 6, 8]  0.000539) 
    |              | 
    ([ 8, 8]  0.000111) 
  }
  From:  (6, 9)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 8, 9]  0.000596) 
  }
  From:  (7, 1)  {
    ([ 5, 1]  0.001935) 
    ([ 6, 1]  0.001225) 
    |              | 
    ([ 8, 1]  0.001078) 
    ([ 9, 1]  0.001790) 
  }
  From:  (7, 2)  {
    |              | 
    ([ 6, 2]  0.001952) 
    ([ 7, 2]  0.000835) 
    |              | 
    ([ 9, 2]  0.000431) 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.000407) 
    |              | 
    |              | 
    ([ 8, 3]  0.000004) 
    |              | 
  }
  From:  (7, 4)  {
    |              | 
    ([ 6, 4]  0.000075) 
    ([ 7, 4]  0.001530) 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    |              | 
    ([ 6, 5]  0.000609) 
    |              | 
    ([ 8, 5]  0.001128) 
    ([ 9, 5]  0.000890) 
  }
  From:  (7, 6)  {
    |              | 
    |              | 
    ([ 7, 6]  0.001021) 
    |              | 
    ([ 9, 6]  0.001486) 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.001071) 
    |              | 
    |              | 
    ([ 8, 7]  0.000908) 
    ([ 9, 7]  0.001539) 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.001739) 
    |              | 
    ([ 7, 8]  0.000332) 
    ([ 8, 8]  0.001837) 
    |              | 
  }
  From:  (7, 9)  {
    |              | 
    ([ 6, 9]  0.000707) 
    |              | 
    |              | 
    ([ 9, 9]  0.001383) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.000010) 
    |              | 
    |              | 
    ([ 9, 1]  0.000478) 
    ([ 1, 1]  0.000375) 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 2]  0.000582) 
    ([ 1, 2]  0.000995) 
  }
  From:  (8, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001797)   }
  From:  (8, 4)  {
    ([ 6, 4]  0.001906) 
    |              | 
    ([ 8, 4]  0.000617) 
    |              | 
    ([ 1, 4]  0.001867) 
  }
  From:  (8, 5)  {
    |              | 
    ([ 7, 5]  0.001029) 
    ([ 8, 5]  0.001544) 
    ([ 9, 5]  0.001216) 
    |              | 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.000740) 
    ([ 1, 6]  0.001287) 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 7]  0.001933) 
  }
  From:  (8, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.001267) 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.000743) 
    ([ 7, 9]  0.001544) 
    ([ 8, 9]  0.000678) 
    |              | 
    ([ 1, 9]  0.001270) 
  }
  From:  (9, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000010) 
    ([ 2, 1]  0.001156) 
  }
  From:  (9, 2)  {
    |              | 
    |              | 
    ([ 9, 2]  0.000894) 
    |              | 
    ([ 2, 2]  0.001269) 
  }
  From:  (9, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 2, 3]  0.000572) 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.001015) 
    |              | 
    ([ 1, 4]  0.000718) 
    |              | 
  }
  From:  (9, 5)  {
    |              | 
    ([ 8, 5]  0.001864) 
    ([ 9, 5]  0.001222) 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.001571) 
    ([ 8, 6]  0.000185) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.001459) 
    ([ 9, 7]  0.000700) 
    |              | 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    ([ 8, 8]  0.001085) 
    |              | 
    ([ 1, 8]  0.000213) 
    |              | 
  }
  From:  (9, 9)  {
    ([ 7, 9]  0.001704) 
    ([ 8, 9]  0.001276) 
    |              | 
    ([ 1, 9]  0.001626) 
    |              | 
  }
}

Loading data, please wait...