ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206337.

Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_17
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 13:28:07 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 1]  0.036543) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.038079) 
    ([ 9, 2]  0.035905) 
    ([ 1, 2]  0.040817) 
    ([ 2, 2]  0.030694) 
    ([ 3, 2]  0.031008) 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.045899) 
    ([ 9, 3]  0.039383) 
    ([ 1, 3]  0.045935) 
    |              | 
    ([ 3, 3]  0.044635) 
  }
  From:  (1, 4)  {
    ([ 8, 4]  0.034991) 
    ([ 9, 4]  0.039431) 
    ([ 1, 4]  0.047755) 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.033281) 
    ([ 9, 5]  0.040203) 
    |              | 
    ([ 2, 5]  0.034385) 
    ([ 3, 5]  0.037990) 
  }
  From:  (1, 6)  {
    ([ 8, 6]  0.037567) 
    ([ 9, 6]  0.042228) 
    |              | 
    ([ 2, 6]  0.046957) 
    |              | 
  }
  From:  (1, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 7]  0.046653) 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.033218) 
    |              | 
    ([ 1, 8]  0.030215) 
    |              | 
    ([ 3, 8]  0.034784) 
  }
  From:  (1, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 9]  0.044115) 
    ([ 3, 9]  0.046886) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.035353) 
    ([ 2, 1]  0.032102) 
    |              | 
    ([ 4, 1]  0.046579) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.048017) 
    |              | 
    |              | 
    |              | 
    ([ 4, 2]  0.032352) 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.034206) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    ([ 1, 4]  0.045172) 
    |              | 
    |              | 
    ([ 4, 4]  0.044671) 
  }
  From:  (2, 5)  {
    ([ 9, 5]  0.031836) 
    ([ 1, 5]  0.032458) 
    |              | 
    |              | 
    ([ 4, 5]  0.048756) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.035220) 
    |              | 
    |              | 
    |              | 
    ([ 4, 6]  0.041822) 
  }
  From:  (2, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 4, 7]  0.034500) 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 8]  0.035667) 
    ([ 4, 8]  0.044915) 
  }
  From:  (2, 9)  {
    |              | 
    ([ 1, 9]  0.031925) 
    |              | 
    |              | 
    ([ 4, 9]  0.045225) 
  }
  From:  (3, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.030733)   }
  From:  (3, 2)  {
    ([ 1, 2]  0.044030) 
    ([ 2, 2]  0.039483) 
    |              | 
    |              | 
    ([ 5, 2]  0.040805) 
  }
  From:  (3, 3)  {
    ([ 1, 3]  0.044974) 
    |              | 
    ([ 3, 3]  0.033584) 
    |              | 
    ([ 5, 3]  0.036128) 
  }
  From:  (3, 4)  {
    |              | 
    ([ 2, 4]  0.036932) 
    |              | 
    |              | 
    ([ 5, 4]  0.039691) 
  }
  From:  (3, 5)  {
    |              | 
    ([ 2, 5]  0.032338) 
    ([ 3, 5]  0.034004) 
    ([ 4, 5]  0.032162) 
    ([ 5, 5]  0.040272) 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.036280) 
    ([ 2, 6]  0.042446) 
    ([ 3, 6]  0.045153) 
    ([ 4, 6]  0.032032) 
    ([ 5, 6]  0.031705) 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.040674) 
    |              | 
    |              | 
    ([ 4, 7]  0.036036) 
    |              | 
  }
  From:  (3, 8)  {
    |              | 
    |              | 
    ([ 3, 8]  0.037344) 
    ([ 4, 8]  0.037223) 
    ([ 5, 8]  0.038546) 
  }
  From:  (3, 9)  {
    ([ 1, 9]  0.034978) 
    ([ 2, 9]  0.045256) 
    |              | 
    ([ 4, 9]  0.048330) 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    ([ 3, 1]  0.041746) 
    ([ 4, 1]  0.046702) 
    ([ 5, 1]  0.033998) 
    |              | 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.037835) 
    ([ 3, 2]  0.031352) 
    |              | 
    ([ 5, 2]  0.041320) 
    |              | 
  }
  From:  (4, 3)  {
    ([ 2, 3]  0.042596) 
    |              | 
    ([ 4, 3]  0.033426) 
    ([ 5, 3]  0.040665) 
    |              | 
  }
  From:  (4, 4)  {
    ([ 2, 4]  0.036736) 
    ([ 3, 4]  0.040518) 
    ([ 4, 4]  0.046717) 
    ([ 5, 4]  0.043155) 
    |              | 
  }
  From:  (4, 5)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 5]  0.031453) 
  }
  From:  (4, 6)  {
    ([ 2, 6]  0.038792) 
    ([ 3, 6]  0.036115) 
    |              | 
    ([ 5, 6]  0.046521) 
    |              | 
  }
  From:  (4, 7)  {
    |              | 
    ([ 3, 7]  0.033081) 
    ([ 4, 7]  0.031079) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    |              | 
    ([ 3, 8]  0.031229) 
    |              | 
    |              | 
    ([ 6, 8]  0.045115) 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.045386) 
    |              | 
    |              | 
    ([ 5, 9]  0.048205) 
    ([ 6, 9]  0.034847) 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.043944) 
    ([ 4, 1]  0.048832) 
    |              | 
    ([ 6, 1]  0.049104) 
    ([ 7, 1]  0.036474) 
  }
  From:  (5, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 2]  0.048551) 
    ([ 7, 2]  0.041502) 
  }
  From:  (5, 3)  {
    |              | 
    ([ 4, 3]  0.035163) 
    ([ 5, 3]  0.033988) 
    |              | 
    |              | 
  }
  From:  (5, 4)  {
    ([ 3, 4]  0.031577) 
    |              | 
    ([ 5, 4]  0.047431) 
    ([ 6, 4]  0.033311) 
    |              | 
  }
  From:  (5, 5)  {
    |              | 
    |              | 
    ([ 5, 5]  0.033780) 
    ([ 6, 5]  0.033566) 
    |              | 
  }
  From:  (5, 6)  {
    ([ 3, 6]  0.048357) 
    ([ 4, 6]  0.033966) 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 7)  {
    ([ 3, 7]  0.032211) 
    |              | 
    ([ 5, 7]  0.037126) 
    |              | 
    |              | 
  }
  From:  (5, 8)  {
    ([ 3, 8]  0.031063) 
    |              | 
    |              | 
    ([ 6, 8]  0.033789) 
    ([ 7, 8]  0.037658) 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.043321) 
    ([ 4, 9]  0.046640) 
    ([ 5, 9]  0.045396) 
    ([ 6, 9]  0.034174) 
    |              | 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.032818) 
    ([ 5, 1]  0.042298) 
    ([ 6, 1]  0.038269) 
    |              | 
    ([ 8, 1]  0.044932) 
  }
  From:  (6, 2)  {
    ([ 4, 2]  0.031282) 
    ([ 5, 2]  0.046709) 
    |              | 
    ([ 7, 2]  0.043067) 
    ([ 8, 2]  0.040197) 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.031986) 
    ([ 7, 3]  0.035121) 
    |              | 
  }
  From:  (6, 4)  {
    ([ 4, 4]  0.044707) 
    |              | 
    ([ 6, 4]  0.045949) 
    ([ 7, 4]  0.048921) 
    |              | 
  }
  From:  (6, 5)  {
    ([ 4, 5]  0.042246) 
    |              | 
    |              | 
    ([ 7, 5]  0.031626) 
    ([ 8, 5]  0.041921) 
  }
  From:  (6, 6)  {
    ([ 4, 6]  0.030492) 
    ([ 5, 6]  0.049231) 
    ([ 6, 6]  0.031814) 
    ([ 7, 6]  0.045782) 
    |              | 
  }
  From:  (6, 7)  {
    |              | 
    ([ 5, 7]  0.044339) 
    |              | 
    ([ 7, 7]  0.048747) 
    |              | 
  }
  From:  (6, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.049281)   }
  From:  (6, 9)  {
    |              | 
    |              | 
    ([ 6, 9]  0.042225) 
    ([ 7, 9]  0.035015) 
    |              | 
  }
  From:  (7, 1)  {
    |              | 
    ([ 6, 1]  0.030501) 
    |              | 
    ([ 8, 1]  0.046270) 
    |              | 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.039894)   }
  From:  (7, 3)  {
    |              | 
    ([ 6, 3]  0.038975) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.030327) 
    ([ 6, 4]  0.049047) 
    |              | 
    ([ 8, 4]  0.031603) 
    ([ 9, 4]  0.038741) 
  }
  From:  (7, 5)  {
    |              | 
    ([ 6, 5]  0.032949) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 6)  {
    |              | 
    |              | 
    ([ 7, 6]  0.044478) 
    ([ 8, 6]  0.041155) 
    ([ 9, 6]  0.033897) 
  }
  From:  (7, 7)  {
    |              | 
    ([ 6, 7]  0.033921) 
    ([ 7, 7]  0.039267) 
    ([ 8, 7]  0.049193) 
    ([ 9, 7]  0.038482) 
  }
  From:  (7, 8)  {
    |              | 
    ([ 6, 8]  0.035415) 
    |              | 
    ([ 8, 8]  0.033600) 
    ([ 9, 8]  0.034629) 
  }
  From:  (7, 9)  {
    |              | 
    |              | 
    ([ 7, 9]  0.034729) 
    ([ 8, 9]  0.030241) 
    ([ 9, 9]  0.033484) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.041892) 
    |              | 
    |              | 
    ([ 9, 1]  0.047649) 
    |              | 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 2]  0.038086) 
    |              | 
  }
  From:  (8, 3)  {
    |              | 
    ([ 7, 3]  0.030539) 
    ([ 8, 3]  0.043877) 
    ([ 9, 3]  0.039569) 
    ([ 1, 3]  0.048189) 
  }
  From:  (8, 4)  {
    ([ 6, 4]  0.036601) 
    |              | 
    |              | 
    |              | 
    ([ 1, 4]  0.038969) 
  }
  From:  (8, 5)  {
    ([ 6, 5]  0.044812) 
    ([ 7, 5]  0.038259) 
    ([ 8, 5]  0.030728) 
    |              | 
    |              | 
  }
  From:  (8, 6)  {
    ([ 6, 6]  0.034461) 
    ([ 7, 6]  0.040141) 
    ([ 8, 6]  0.045701) 
    ([ 9, 6]  0.031860) 
    ([ 1, 6]  0.033009) 
  }
  From:  (8, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 7]  0.042940) 
    ([ 1, 7]  0.044852) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.038274) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.030544) 
    ([ 7, 9]  0.047173) 
    ([ 8, 9]  0.031490) 
    |              | 
    ([ 1, 9]  0.032456) 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.048704) 
    ([ 8, 1]  0.047265) 
    |              | 
    ([ 1, 1]  0.044841) 
    |              | 
  }
  From:  (9, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 2]  0.035353) 
    |              | 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.031969) 
    |              | 
    ([ 9, 3]  0.043137) 
    ([ 1, 3]  0.040261) 
    ([ 2, 3]  0.032854) 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.041214) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 5)  {
    |              | 
    ([ 8, 5]  0.042838) 
    ([ 9, 5]  0.044548) 
    ([ 1, 5]  0.043410) 
    ([ 2, 5]  0.045355) 
  }
  From:  (9, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 6]  0.032049) 
    ([ 2, 6]  0.031892) 
  }
  From:  (9, 7)  {
    ([ 7, 7]  0.040454) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    ([ 8, 8]  0.043554) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 9)  {
    |              | 
    |              | 
    ([ 9, 9]  0.042556) 
    ([ 1, 9]  0.049338) 
    ([ 2, 9]  0.035069) 
  }
}

Loading data, please wait...