Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_5
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt
                            
% Thu Aug 20 08:34:34 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4v, ev1v)  {
  From:  (1, 1)  {
    |              | 
    |              | 
    ([ 1, 1]  0.000697) 
    ([ 2, 1]  0.000977) 
    |              | 
  }
  From:  (1, 2)  {
    |              | 
    ([ 9, 2]  0.000192) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.001170) 
    |              | 
    ([ 1, 3]  0.000181) 
    |              | 
    ([ 3, 3]  0.001566) 
  }
  From:  (1, 4)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 4]  0.001394) 
    |              | 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.000307) 
    |              | 
    |              | 
    ([ 2, 5]  0.001512) 
    |              | 
  }
  From:  (1, 6)  {
    ([ 8, 6]  0.001902) 
    |              | 
    ([ 1, 6]  0.000388) 
    ([ 2, 6]  0.001578) 
    ([ 3, 6]  0.001773) 
  }
  From:  (1, 7)  {
    |              | 
    ([ 9, 7]  0.000484) 
    |              | 
    ([ 2, 7]  0.000811) 
    |              | 
  }
  From:  (1, 8)  {
    |              | 
    ([ 9, 8]  0.001285) 
    ([ 1, 8]  0.000147) 
    |              | 
    ([ 3, 8]  0.000274) 
  }
  From:  (1, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 9]  0.001184) 
    |              | 
  }
  From:  (2, 1)  {
    ([ 9, 1]  0.000277) 
    |              | 
    ([ 2, 1]  0.000153) 
    |              | 
    ([ 4, 1]  0.000356) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.001633) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.001362) 
    ([ 1, 3]  0.001460) 
    |              | 
    |              | 
    ([ 4, 3]  0.001964) 
  }
  From:  (2, 4)  {
    ([ 9, 4]  0.001859) 
    ([ 1, 4]  0.000297) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 5)  {
    ([ 9, 5]  0.001547) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 6)  {
    |              | 
    ([ 1, 6]  0.000312) 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.001825) 
    ([ 1, 7]  0.001995) 
    |              | 
    ([ 3, 7]  0.001939) 
    |              | 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.000759) 
    ([ 1, 8]  0.000406) 
    ([ 2, 8]  0.000993) 
    ([ 3, 8]  0.001851) 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    ([ 1, 9]  0.000415) 
    ([ 2, 9]  0.001902) 
    |              | 
    |              | 
  }
  From:  (3, 1)  {
    ([ 1, 1]  0.000238) 
    ([ 2, 1]  0.000560) 
    ([ 3, 1]  0.000426) 
    ([ 4, 1]  0.000631) 
    ([ 5, 1]  0.001019) 
  }
  From:  (3, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 4, 2]  0.001230) 
    |              | 
  }
  From:  (3, 3)  {
    |              | 
    |              | 
    |              | 
    ([ 4, 3]  0.001886) 
    ([ 5, 3]  0.000645) 
  }
  From:  (3, 4)  {
    ([ 1, 4]  0.000134) 
    ([ 2, 4]  0.000531) 
    ([ 3, 4]  0.000941) 
    ([ 4, 4]  0.000588) 
    |              | 
  }
  From:  (3, 5)  {
    ([ 1, 5]  0.000309) 
    ([ 2, 5]  0.001214) 
    |              | 
    ([ 4, 5]  0.001864) 
    |              | 
  }
  From:  (3, 6)  {
    |              | 
    |              | 
    ([ 3, 6]  0.000463) 
    |              | 
    ([ 5, 6]  0.000666) 
  }
  From:  (3, 7)  {
    |              | 
    |              | 
    ([ 3, 7]  0.001928) 
    |              | 
    |              | 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.000380) 
    |              | 
    ([ 3, 8]  0.000091) 
    ([ 4, 8]  0.001414) 
    ([ 5, 8]  0.001647) 
  }
  From:  (3, 9)  {
    |              | 
    |              | 
    ([ 3, 9]  0.000907) 
    |              | 
    ([ 5, 9]  0.001666) 
  }
  From:  (4, 1)  {
    ([ 2, 1]  0.000512) 
    ([ 3, 1]  0.000850) 
    ([ 4, 1]  0.000836) 
    |              | 
    |              | 
  }
  From:  (4, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 2]  0.001851) 
    ([ 6, 2]  0.000178) 
  }
  From:  (4, 3)  {
    |              | 
    |              | 
    ([ 4, 3]  0.001605) 
    |              | 
    |              | 
  }
  From:  (4, 4)  {
    |              | 
    ([ 3, 4]  0.000396) 
    |              | 
    ([ 5, 4]  0.001064) 
    ([ 6, 4]  0.001998) 
  }
  From:  (4, 5)  {
    |              | 
    |              | 
    ([ 4, 5]  0.000640) 
    |              | 
    ([ 6, 5]  0.000138) 
  }
  From:  (4, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 6]  0.000941) 
    |              | 
  }
  From:  (4, 7)  {
    ([ 2, 7]  0.001470) 
    ([ 3, 7]  0.000289) 
    ([ 4, 7]  0.001207) 
    ([ 5, 7]  0.001596) 
    ([ 6, 7]  0.000507) 
  }
  From:  (4, 8)  {
    |              | 
    |              | 
    ([ 4, 8]  0.000495) 
    ([ 5, 8]  0.000894) 
    ([ 6, 8]  0.000857) 
  }
  From:  (4, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 9]  0.001279) 
    ([ 6, 9]  0.001723) 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.001005) 
    ([ 4, 1]  0.001861) 
    |              | 
    ([ 6, 1]  0.001158) 
    ([ 7, 1]  0.001032) 
  }
  From:  (5, 2)  {
    ([ 3, 2]  0.001441) 
    |              | 
    ([ 5, 2]  0.000746) 
    ([ 6, 2]  0.001342) 
    ([ 7, 2]  0.001324) 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.001375) 
    ([ 4, 3]  0.001243) 
    |              | 
    ([ 6, 3]  0.001655) 
    |              | 
  }
  From:  (5, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001776)   }
  From:  (5, 5)  {
    ([ 3, 5]  0.000127) 
    |              | 
    |              | 
    ([ 6, 5]  0.001112) 
    ([ 7, 5]  0.000755) 
  }
  From:  (5, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001479)   }
  From:  (5, 7)  {
    |              | 
    ([ 4, 7]  0.001015) 
    ([ 5, 7]  0.001030) 
    ([ 6, 7]  0.001496) 
    ([ 7, 7]  0.001960) 
  }
  From:  (5, 8)  {
    ([ 3, 8]  0.000662) 
    |              | 
    ([ 5, 8]  0.000312) 
    |              | 
    ([ 7, 8]  0.000917) 
  }
  From:  (5, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 9]  0.000594) 
    ([ 7, 9]  0.000045) 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.000029) 
    ([ 5, 1]  0.001838) 
    |              | 
    ([ 7, 1]  0.001645) 
    |              | 
  }
  From:  (6, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 2]  0.001471) 
    |              | 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.000532) 
    ([ 7, 3]  0.000252) 
    ([ 8, 3]  0.000673) 
  }
  From:  (6, 4)  {
    |              | 
    ([ 5, 4]  0.000485) 
    ([ 6, 4]  0.001828) 
    ([ 7, 4]  0.001984) 
    ([ 8, 4]  0.001036) 
  }
  From:  (6, 5)  {
    |              | 
    ([ 5, 5]  0.000273) 
    |              | 
    |              | 
    ([ 8, 5]  0.000675) 
  }
  From:  (6, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 6]  0.001594) 
    |              | 
  }
  From:  (6, 7)  {
    ([ 4, 7]  0.000542) 
    ([ 5, 7]  0.000475) 
    |              | 
    |              | 
    ([ 8, 7]  0.001242) 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.001535) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (6, 9)  {
    ([ 4, 9]  0.000070) 
    ([ 5, 9]  0.001014) 
    ([ 6, 9]  0.000695) 
    |              | 
    ([ 8, 9]  0.000274) 
  }
  From:  (7, 1)  {
    ([ 5, 1]  0.001811) 
    |              | 
    ([ 7, 1]  0.000503) 
    ([ 8, 1]  0.000430) 
    |              | 
  }
  From:  (7, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 8, 2]  0.001021) 
    |              | 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.001386) 
    ([ 6, 3]  0.000554) 
    |              | 
    |              | 
    ([ 9, 3]  0.000095) 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.001845) 
    |              | 
    ([ 7, 4]  0.001227) 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    ([ 5, 5]  0.000295) 
    |              | 
    |              | 
    ([ 8, 5]  0.001762) 
    |              | 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.001804) 
    ([ 6, 6]  0.000721) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 8, 7]  0.001393) 
    |              | 
  }
  From:  (7, 8)  {
    |              | 
    ([ 6, 8]  0.000580) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.001395) 
    ([ 6, 9]  0.001396) 
    ([ 7, 9]  0.001930) 
    ([ 8, 9]  0.000436) 
    |              | 
  }
  From:  (8, 1)  {
    |              | 
    ([ 7, 1]  0.000553) 
    ([ 8, 1]  0.001673) 
    ([ 9, 1]  0.001729) 
    |              | 
  }
  From:  (8, 2)  {
    ([ 6, 2]  0.000905) 
    ([ 7, 2]  0.001098) 
    ([ 8, 2]  0.000522) 
    |              | 
    ([ 1, 2]  0.001552) 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.001858) 
    ([ 7, 3]  0.000277) 
    ([ 8, 3]  0.000359) 
    ([ 9, 3]  0.001527) 
    |              | 
  }
  From:  (8, 4)  {
    |              | 
    ([ 7, 4]  0.000717) 
    ([ 8, 4]  0.000029) 
    |              | 
    |              | 
  }
  From:  (8, 5)  {
    |              | 
    |              | 
    ([ 8, 5]  0.000773) 
    |              | 
    ([ 1, 5]  0.000851) 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.001979) 
    ([ 1, 6]  0.001551) 
  }
  From:  (8, 7)  {
    |              | 
    ([ 7, 7]  0.001386) 
    |              | 
    |              | 
    ([ 1, 7]  0.001086) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.001269) 
    ([ 7, 8]  0.000334) 
    ([ 8, 8]  0.001628) 
    ([ 9, 8]  0.000292) 
    ([ 1, 8]  0.001795) 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.001623) 
    ([ 7, 9]  0.001337) 
    ([ 8, 9]  0.001470) 
    |              | 
    |              | 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.001383) 
    ([ 8, 1]  0.001147) 
    |              | 
    ([ 1, 1]  0.001813) 
    |              | 
  }
  From:  (9, 2)  {
    |              | 
    ([ 8, 2]  0.000452) 
    |              | 
    |              | 
    ([ 2, 2]  0.000351) 
  }
  From:  (9, 3)  {
    |              | 
    ([ 8, 3]  0.001910) 
    ([ 9, 3]  0.000509) 
    ([ 1, 3]  0.000316) 
    ([ 2, 3]  0.000080) 
  }
  From:  (9, 4)  {
    ([ 7, 4]  0.001620) 
    |              | 
    |              | 
    |              | 
    ([ 2, 4]  0.001787) 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.001816) 
    |              | 
    ([ 9, 5]  0.000132) 
    |              | 
    ([ 2, 5]  0.001618) 
  }
  From:  (9, 6)  {
    |              | 
    ([ 8, 6]  0.001965) 
    ([ 9, 6]  0.000572) 
    |              | 
    ([ 2, 6]  0.000090) 
  }
  From:  (9, 7)  {
    ([ 7, 7]  0.001133) 
    |              | 
    ([ 9, 7]  0.000453) 
    ([ 1, 7]  0.000195) 
    ([ 2, 7]  0.001974) 
  }
  From:  (9, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.000439) 
    |              | 
  }
  From:  (9, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 9]  0.000963) 
    ([ 2, 9]  0.000342) 
  }
}

Loading data, please wait...