Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_8
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt
                            
% Fri Aug 21 22:55:20 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1h, ev4h)  {
  From:  (1, 1)  {
    |              |     ([ 1, 9]  0.034630)     ([ 1, 1]  0.048400)     ([ 1, 2]  0.039124)     ([ 1, 3]  0.049250) 
  }
  From:  (1, 2)  {
    |              |     |              |     |              |     ([ 1, 3]  0.049629)     |              | 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.040089)     ([ 1, 2]  0.039093)     |              |     ([ 1, 4]  0.034734)     ([ 1, 5]  0.036104) 
  }
  From:  (1, 4)  {
    |              |     |              |     |              |     ([ 1, 5]  0.030680)     |              | 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.032497)     ([ 1, 4]  0.034758)     ([ 1, 5]  0.031354)     |              |     |              | 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.032345)     |              |     |              |     ([ 1, 7]  0.036586)     |              | 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.047528)     ([ 1, 6]  0.033723)     |              |     |              |     ([ 1, 9]  0.044615) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.031124)     |              |     |              |     ([ 1, 9]  0.036071)     ([ 1, 1]  0.037721) 
  }
  From:  (1, 9)  {
    |              |     ([ 1, 8]  0.039638)     |              |     ([ 1, 1]  0.041526)     |              | 
  }
  From:  (2, 1)  {
    |              |     |              |     ([ 2, 1]  0.036000)     |              |     |              | 
  }
  From:  (2, 2)  {
    |              |     ([ 2, 1]  0.046206)     ([ 2, 2]  0.045417)     |              |     ([ 2, 4]  0.046148) 
  }
  From:  (2, 3)  {
    |              |     ([ 2, 2]  0.035376)     |              |     |              |     ([ 2, 5]  0.035003) 
  }
  From:  (2, 4)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.048743)   }
  From:  (2, 5)  {
    |              |     |              |     |              |     |              |     ([ 2, 7]  0.043557) 
  }
  From:  (2, 6)  {
    |              |     ([ 2, 5]  0.048558)     |              |     ([ 2, 7]  0.031851)     ([ 2, 8]  0.032475) 
  }
  From:  (2, 7)  {
    |              |     |              |     |              |     |              |     ([ 2, 9]  0.038749) 
  }
  From:  (2, 8)  {
    |              |     ([ 2, 7]  0.042290)     |              |     |              |     ([ 2, 1]  0.038023) 
  }
  From:  (2, 9)  {
    |              |     ([ 2, 8]  0.040840)     ([ 2, 9]  0.042252)     |              |     ([ 2, 2]  0.044704) 
  }
  From:  (3, 1)  {
    |              |     ([ 3, 9]  0.031188)     ([ 3, 1]  0.041475)     ([ 3, 2]  0.031877)     ([ 3, 3]  0.032425) 
  }
  From:  (3, 2)  {
    |              |     ([ 3, 1]  0.047475)     ([ 3, 2]  0.047833)     ([ 3, 3]  0.041206)     |              | 
  }
  From:  (3, 3)  {
    ([ 3, 1]  0.036822)     |              |     ([ 3, 3]  0.042340)     |              |     ([ 3, 5]  0.039630) 
  }
  From:  (3, 4)  {
    |              |     ([ 3, 3]  0.042009)     ([ 3, 4]  0.035938)     |              |     ([ 3, 6]  0.032126) 
  }
  From:  (3, 5)  {
    |              |     ([ 3, 4]  0.047349)     |              |     ([ 3, 6]  0.036340)     ([ 3, 7]  0.042449) 
  }
  From:  (3, 6)  {
    |              |     |              |     ([ 3, 6]  0.044890)     |              |     ([ 3, 8]  0.048707) 
  }
  From:  (3, 7)  {
    |              |     |              |     |              |     ([ 3, 8]  0.034090)     |              | 
  }
  From:  (3, 8)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.031124)   }
  From:  (3, 9)  {
    ([ 3, 7]  0.045330)     |              |     ([ 3, 9]  0.047451)     |              |     ([ 3, 2]  0.036823) 
  }
  From:  (4, 1)  {
    |              |     ([ 4, 9]  0.039799)     ([ 4, 1]  0.033501)     |              |     ([ 4, 3]  0.049027) 
  }
  From:  (4, 2)  {
    |              |     |              |     |              |     ([ 4, 3]  0.045887)     |              | 
  }
  From:  (4, 3)  {
    ([ 4, 1]  0.040397)     ([ 4, 2]  0.045637)     |              |     ([ 4, 4]  0.035842)     |              | 
  }
  From:  (4, 4)  {
    ([ 4, 2]  0.046226)     |              |     ([ 4, 4]  0.032928)     |              |     |              | 
  }
  From:  (4, 5)  {
    ([ 4, 3]  0.039181)     |              |     ([ 4, 5]  0.042139)     ([ 4, 6]  0.049169)     |              | 
  }
  From:  (4, 6)  {
    ([ 4, 4]  0.048484)     ([ 4, 5]  0.041957)     ([ 4, 6]  0.044660)     |              |     ([ 4, 8]  0.046603) 
  }
  From:  (4, 7)  {
    |              |     ([ 4, 6]  0.043285)     |              |     |              |     |              | 
  }
  From:  (4, 8)  {
    |              |     ([ 4, 7]  0.042869)     ([ 4, 8]  0.046189)     |              |     |              | 
  }
  From:  (4, 9)  {
    ([ 4, 7]  0.038335)     |              |     |              |     |              |     ([ 4, 2]  0.046840) 
  }
  From:  (5, 1)  {
    ([ 5, 8]  0.037871)     |              |     ([ 5, 1]  0.048606)     |              |     ([ 5, 3]  0.046202) 
  }
  From:  (5, 2)  {
    ([ 5, 9]  0.041814)     |              |     |              |     ([ 5, 3]  0.035301)     |              | 
  }
  From:  (5, 3)  {
    ([ 5, 1]  0.045276)     ([ 5, 2]  0.033993)     |              |     ([ 5, 4]  0.041601)     |              | 
  }
  From:  (5, 4)  {
    ([ 5, 2]  0.048096)     ([ 5, 3]  0.048963)     ([ 5, 4]  0.042475)     ([ 5, 5]  0.031665)     |              | 
  }
  From:  (5, 5)  {
    |              |     ([ 5, 4]  0.033922)     |              |     |              |     ([ 5, 7]  0.046976) 
  }
  From:  (5, 6)  {
    ([ 5, 4]  0.040546)     ([ 5, 5]  0.049541)     ([ 5, 6]  0.047329)     ([ 5, 7]  0.032269)     |              | 
  }
  From:  (5, 7)  {
    |              |     ([ 5, 6]  0.046347)     ([ 5, 7]  0.034763)     ([ 5, 8]  0.041508)     ([ 5, 9]  0.048466) 
  }
  From:  (5, 8)  {
    ([ 5, 6]  0.034058)     ([ 5, 7]  0.045886)     |              |     ([ 5, 9]  0.037304)     |              | 
  }
  From:  (5, 9)  {
    ([ 5, 7]  0.038365)     ([ 5, 8]  0.032962)     ([ 5, 9]  0.042346)     ([ 5, 1]  0.049401)     |              | 
  }
  From:  (6, 1)  {
    ([ 6, 8]  0.044375)     ([ 6, 9]  0.046959)     |              |     |              |     |              | 
  }
  From:  (6, 2)  {
    ([ 6, 9]  0.043052)     ([ 6, 1]  0.043572)     ([ 6, 2]  0.037686)     |              |     ([ 6, 4]  0.042977) 
  }
  From:  (6, 3)  {
    |              |     ([ 6, 2]  0.035221)     |              |     |              |     ([ 6, 5]  0.041630) 
  }
  From:  (6, 4)  {
    ([ 6, 2]  0.046269)     ([ 6, 3]  0.041911)     ([ 6, 4]  0.046236)     ([ 6, 5]  0.039893)     ([ 6, 6]  0.036192) 
  }
  From:  (6, 5)  {
    ([ 6, 3]  0.041758)     |              |     ([ 6, 5]  0.047359)     ([ 6, 6]  0.044521)     |              | 
  }
  From:  (6, 6)  {
    |              |     |              |     |              |     |              |     ([ 6, 8]  0.042035) 
  }
  From:  (6, 7)  {
    ([ 6, 5]  0.030053)     ([ 6, 6]  0.045956)     ([ 6, 7]  0.037628)     ([ 6, 8]  0.031299)     ([ 6, 9]  0.038252) 
  }
  From:  (6, 8)  {
    ([ 6, 6]  0.048791)     ([ 6, 7]  0.044359)     ([ 6, 8]  0.038419)     |              |     ([ 6, 1]  0.033916) 
  }
  From:  (6, 9)  {
    ([ 6, 7]  0.044298)     |              |     ([ 6, 9]  0.046529)     |              |     |              | 
  }
  From:  (7, 1)  {
    ([ 7, 8]  0.031236)     |              |     ([ 7, 1]  0.046425)     ([ 7, 2]  0.046486)     ([ 7, 3]  0.037999) 
  }
  From:  (7, 2)  {
    |              |     ([ 7, 1]  0.046800)     ([ 7, 2]  0.036490)     ([ 7, 3]  0.035785)     ([ 7, 4]  0.032118) 
  }
  From:  (7, 3)  {
    |              |     ([ 7, 2]  0.042289)     ([ 7, 3]  0.031066)     ([ 7, 4]  0.040669)     ([ 7, 5]  0.036264) 
  }
  From:  (7, 4)  {
    |              |     ([ 7, 3]  0.043250)     |              |     |              |     ([ 7, 6]  0.038261) 
  }
  From:  (7, 5)  {
    ([ 7, 3]  0.034602)     ([ 7, 4]  0.031301)     |              |     |              |     ([ 7, 7]  0.038415) 
  }
  From:  (7, 6)  {
    ([ 7, 4]  0.037180)     |              |     ([ 7, 6]  0.038804)     ([ 7, 7]  0.043259)     ([ 7, 8]  0.045237) 
  }
  From:  (7, 7)  {
    |              |     |              |     |              |     |              |     ([ 7, 9]  0.032119) 
  }
  From:  (7, 8)  {
    |              |     ([ 7, 7]  0.032153)     |              |     |              |     |              | 
  }
  From:  (7, 9)  {
    ([ 7, 7]  0.045610)     |              |     ([ 7, 9]  0.044376)     |              |     |              | 
  }
  From:  (8, 1)  {
    ([ 8, 8]  0.038134)     ([ 8, 9]  0.038507)     ([ 8, 1]  0.046105)     |              |     ([ 8, 3]  0.048247) 
  }
  From:  (8, 2)  {
    |              |     ([ 8, 1]  0.044770)     |              |     ([ 8, 3]  0.036632)     |              | 
  }
  From:  (8, 3)  {
    ([ 8, 1]  0.032066)     ([ 8, 2]  0.034927)     |              |     ([ 8, 4]  0.037775)     ([ 8, 5]  0.031612) 
  }
  From:  (8, 4)  {
    ([ 8, 2]  0.031259)     ([ 8, 3]  0.044508)     ([ 8, 4]  0.037667)     |              |     |              | 
  }
  From:  (8, 5)  {
    |              |     |              |     |              |     |              |     ([ 8, 7]  0.031009) 
  }
  From:  (8, 6)  {
    |              |     ([ 8, 5]  0.041855)     |              |     ([ 8, 7]  0.049840)     ([ 8, 8]  0.048187) 
  }
  From:  (8, 7)  {
    ([ 8, 5]  0.047131)     |              |     |              |     |              |     ([ 8, 9]  0.032027) 
  }
  From:  (8, 8)  {
    ([ 8, 6]  0.044997)     |              |     ([ 8, 8]  0.043611)     |              |     |              | 
  }
  From:  (8, 9)  {
    ([ 8, 7]  0.044498)     ([ 8, 8]  0.046653)     |              |     ([ 8, 1]  0.049046)     ([ 8, 2]  0.041176) 
  }
  From:  (9, 1)  {
    ([ 9, 8]  0.045471)     |              |     ([ 9, 1]  0.036531)     ([ 9, 2]  0.043692)     |              | 
  }
  From:  (9, 2)  {
    ([ 9, 9]  0.046083)     ([ 9, 1]  0.037419)     ([ 9, 2]  0.039941)     |              |     |              | 
  }
  From:  (9, 3)  {
    |              |     |              |     |              |     ([ 9, 4]  0.037670)     ([ 9, 5]  0.033937) 
  }
  From:  (9, 4)  {
    |              |     ([ 9, 3]  0.031567)     |              |     |              |     ([ 9, 6]  0.041141) 
  }
  From:  (9, 5)  {
    |              |     ([ 9, 4]  0.033822)     |              |     ([ 9, 6]  0.031393)     ([ 9, 7]  0.042367) 
  }
  From:  (9, 6)  {
    ([ 9, 4]  0.046377)     |              |     |              |     |              |     ([ 9, 8]  0.040224) 
  }
  From:  (9, 7)  {
    ([ 9, 5]  0.047194)     |              |     ([ 9, 7]  0.031047)     ([ 9, 8]  0.038564)     ([ 9, 9]  0.045793) 
  }
  From:  (9, 8)  {
    ([ 9, 6]  0.048377)     ([ 9, 7]  0.044627)     |              |     ([ 9, 9]  0.030600)     |              | 
  }
  From:  (9, 9)  {
    |              |     ([ 9, 8]  0.038076)     |              |     ([ 9, 1]  0.031947)     |              | 
  }
}

Loading data, please wait...