Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_1_OLD
attsefd2.w *
attsefd2.ws *
attvatts.w *
attvatts.ws *
ea1dea1d.w *
ea1dea1d.ws *
ea1dea2c.w *
ea1dea2c.ws *
ea1dea2d.w *
ea1dea2d.ws *
ea1dia1d.w *
ea1dia1d.ws *
ea1uea1u.w *
ea1uea1u.ws *
ea1uea2c.w *
ea1uea2c.ws *
ea1uea2u.w *
ea1uea2u.ws *
ea1uia1u.w *
ea1uia1u.ws *
ea2cea2c.w *
ea2cea2c.ws *
ea2cestg.w *
ea2cestg.ws *
ea2cia2c.w *
ea2cia2c.ws *
ea2dea1d.w *
ea2dea2d.w *
ea2dea2d.ws *
ea2destg.w *
ea2destg.ws *
ea2dia2d.w *
ea2dia2d.ws *
ea2uea1u.w *
ea2uea2u.w *
ea2uea2u.ws *
ea2uestg.w *
ea2uestg.ws *
ea2uia2u.w *
ea2uia2u.ws *
ectlectl.ws *
ectlictl.ws *
efd1efd1.w *
efd1efd1.ws *
efd1efd2.w *
efd1efd2.ws *
efd1exfr.w *
efd1exfr.ws *
efd1ia1d.w
efd1ia1d.ws *
efd1ia1u.w
efd1ia1u.ws *
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1ifd1.ws *
efd1infs.w *
efd1infs.ws *
efd1istg.w *
efd1istg.ws *
efd2ea2c.w *
efd2ea2c.ws *
efd2ea2d.w *
efd2ea2d.ws *
efd2ea2u.w *
efd2ea2u.ws *
efd2efd1.w *
efd2efd1.ws *
efd2efd2.w *
efd2efd2.ws *
efd2estg.w *
efd2ifd2.w *
ena1ea1d.w *
ena1ea1d.ws *
ena1ea1u.w *
ena1ea1u.ws *
enpfexfs.w *
enpfexfs.ws *
enstestg.w *
enstestg.ws *
estgea2c.w *
estgea2c.ws *
estgea2d.w *
estgea2d.ws *
estgea2u.w *
estgea2u.ws *
estgestg.w *
estgestg.ws *
estgexfs.w *
estgexfs.ws *
estgistg.w *
estgistg.ws *
exfrexfr.w *
exfrexfr.ws *
exfrifd1.w *
exfrifd1.ws *
exfrifd2.w *
exfrifd2.ws *
exfrinfr.w *
exfrinfr.ws *
exfsefd2.w *
exfsefd2.ws *
exfsexfr.w *
exfsexfr.ws *
exfsexfs.w *
exfsexfs.ws *
exfsifd1.w *
exfsifd1.ws *
exfsinfs.w *
exfsinfs.ws *
ia1dea1d.w *
ia1dea1d.ws *
ia1uea1u.w *
ia1uea1u.ws *
ia2cea2c.w *
ia2cea2c.ws *
ia2dea2d.w *
ia2dea2d.ws *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1d.ws *
mgnsea1u.w *
mgnsea1u.ws *
weightslist.txt *
                            
% Mon Aug  3 15:42:52 2015

% Input layer: (9, 9)
% Output layer: (1, 81)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(efd2, ea2d)  {
  From:  (1, 1)  {
    ([ 1,80]  0.000961)     ([ 1,81]  0.001185)     ([ 1, 1]  0.000890)     ([ 1, 2]  0.000917)     ([ 1, 3]  0.000844) 
  }
  From:  (1, 2)  {
    ([ 1,81]  0.001580)     ([ 1, 1]  0.001797)     ([ 1, 2]  0.001352)     ([ 1, 3]  0.001324)     ([ 1, 4]  0.001671) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.001721)     ([ 1, 2]  0.001635)     ([ 1, 3]  0.001410)     ([ 1, 4]  0.000789)     ([ 1, 5]  0.001331) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.001597)     ([ 1, 3]  0.001807)     ([ 1, 4]  0.001969)     ([ 1, 5]  0.002094)     ([ 1, 6]  0.001290) 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.001436)     ([ 1, 4]  0.001425)     ([ 1, 5]  0.002062)     ([ 1, 6]  0.001941)     ([ 1, 7]  0.001806) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.001350)     ([ 1, 5]  0.001850)     ([ 1, 6]  0.001634)     ([ 1, 7]  0.000985)     ([ 1, 8]  0.001183) 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.000870)     ([ 1, 6]  0.001185)     ([ 1, 7]  0.001964)     ([ 1, 8]  0.001843)     ([ 1, 9]  0.001962) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.001861)     ([ 1, 7]  0.001406)     ([ 1, 8]  0.001801)     ([ 1, 9]  0.002088)     ([ 1,10]  0.001642) 
  }
  From:  (1, 9)  {
    ([ 1, 7]  0.000808)     ([ 1, 8]  0.001329)     ([ 1, 9]  0.001026)     ([ 1,10]  0.000812)     ([ 1,11]  0.001714) 
  }
  From:  (2, 1)  {
    ([ 1, 8]  0.000897)     ([ 1, 9]  0.002091)     ([ 1,10]  0.000965)     ([ 1,11]  0.001018)     ([ 1,12]  0.001865) 
  }
  From:  (2, 2)  {
    ([ 1, 9]  0.001774)     ([ 1,10]  0.001105)     ([ 1,11]  0.001176)     ([ 1,12]  0.001321)     ([ 1,13]  0.001884) 
  }
  From:  (2, 3)  {
    ([ 1,10]  0.001531)     ([ 1,11]  0.001785)     ([ 1,12]  0.000790)     ([ 1,13]  0.002020)     ([ 1,14]  0.001020) 
  }
  From:  (2, 4)  {
    ([ 1,11]  0.001516)     ([ 1,12]  0.001534)     ([ 1,13]  0.001256)     ([ 1,14]  0.000979)     ([ 1,15]  0.001608) 
  }
  From:  (2, 5)  {
    ([ 1,12]  0.001102)     ([ 1,13]  0.000807)     ([ 1,14]  0.000923)     ([ 1,15]  0.001092)     ([ 1,16]  0.000897) 
  }
  From:  (2, 6)  {
    ([ 1,13]  0.001236)     ([ 1,14]  0.002057)     ([ 1,15]  0.001267)     ([ 1,16]  0.000952)     ([ 1,17]  0.001857) 
  }
  From:  (2, 7)  {
    ([ 1,14]  0.000966)     ([ 1,15]  0.001735)     ([ 1,16]  0.000871)     ([ 1,17]  0.001360)     ([ 1,18]  0.001880) 
  }
  From:  (2, 8)  {
    ([ 1,15]  0.001240)     ([ 1,16]  0.000847)     ([ 1,17]  0.000992)     ([ 1,18]  0.000721)     ([ 1,19]  0.001700) 
  }
  From:  (2, 9)  {
    ([ 1,16]  0.001701)     ([ 1,17]  0.000950)     ([ 1,18]  0.000865)     ([ 1,19]  0.000793)     ([ 1,20]  0.001704) 
  }
  From:  (3, 1)  {
    ([ 1,17]  0.001942)     ([ 1,18]  0.002010)     ([ 1,19]  0.001738)     ([ 1,20]  0.001517)     ([ 1,21]  0.001430) 
  }
  From:  (3, 2)  {
    ([ 1,18]  0.001937)     ([ 1,19]  0.000716)     ([ 1,20]  0.000847)     ([ 1,21]  0.001686)     ([ 1,22]  0.001083) 
  }
  From:  (3, 3)  {
    ([ 1,19]  0.001223)     ([ 1,20]  0.000891)     ([ 1,21]  0.001386)     ([ 1,22]  0.001768)     ([ 1,23]  0.000825) 
  }
  From:  (3, 4)  {
    ([ 1,20]  0.001794)     ([ 1,21]  0.001657)     ([ 1,22]  0.001492)     ([ 1,23]  0.000852)     ([ 1,24]  0.000898) 
  }
  From:  (3, 5)  {
    ([ 1,21]  0.001671)     ([ 1,22]  0.001356)     ([ 1,23]  0.001910)     ([ 1,24]  0.000822)     ([ 1,25]  0.002059) 
  }
  From:  (3, 6)  {
    ([ 1,22]  0.000932)     ([ 1,23]  0.000747)     ([ 1,24]  0.001223)     ([ 1,25]  0.001790)     ([ 1,26]  0.001990) 
  }
  From:  (3, 7)  {
    ([ 1,23]  0.001149)     ([ 1,24]  0.001858)     ([ 1,25]  0.001317)     ([ 1,26]  0.000891)     ([ 1,27]  0.001373) 
  }
  From:  (3, 8)  {
    ([ 1,24]  0.001057)     ([ 1,25]  0.001352)     ([ 1,26]  0.002018)     ([ 1,27]  0.001164)     ([ 1,28]  0.000984) 
  }
  From:  (3, 9)  {
    ([ 1,25]  0.002007)     ([ 1,26]  0.001472)     ([ 1,27]  0.001015)     ([ 1,28]  0.001626)     ([ 1,29]  0.001117) 
  }
  From:  (4, 1)  {
    ([ 1,26]  0.001766)     ([ 1,27]  0.001447)     ([ 1,28]  0.001205)     ([ 1,29]  0.001202)     ([ 1,30]  0.001534) 
  }
  From:  (4, 2)  {
    ([ 1,27]  0.000716)     ([ 1,28]  0.001188)     ([ 1,29]  0.001342)     ([ 1,30]  0.001916)     ([ 1,31]  0.001418) 
  }
  From:  (4, 3)  {
    ([ 1,28]  0.000864)     ([ 1,29]  0.000872)     ([ 1,30]  0.000822)     ([ 1,31]  0.001319)     ([ 1,32]  0.001660) 
  }
  From:  (4, 4)  {
    ([ 1,29]  0.001043)     ([ 1,30]  0.002002)     ([ 1,31]  0.001357)     ([ 1,32]  0.001653)     ([ 1,33]  0.001559) 
  }
  From:  (4, 5)  {
    ([ 1,30]  0.001125)     ([ 1,31]  0.001427)     ([ 1,32]  0.001588)     ([ 1,33]  0.000778)     ([ 1,34]  0.001818) 
  }
  From:  (4, 6)  {
    ([ 1,31]  0.001769)     ([ 1,32]  0.001321)     ([ 1,33]  0.001694)     ([ 1,34]  0.001032)     ([ 1,35]  0.001206) 
  }
  From:  (4, 7)  {
    ([ 1,32]  0.000942)     ([ 1,33]  0.002073)     ([ 1,34]  0.001907)     ([ 1,35]  0.000710)     ([ 1,36]  0.000903) 
  }
  From:  (4, 8)  {
    ([ 1,33]  0.001460)     ([ 1,34]  0.001626)     ([ 1,35]  0.001955)     ([ 1,36]  0.001535)     ([ 1,37]  0.001187) 
  }
  From:  (4, 9)  {
    ([ 1,34]  0.001031)     ([ 1,35]  0.001560)     ([ 1,36]  0.002073)     ([ 1,37]  0.002066)     ([ 1,38]  0.001590) 
  }
  From:  (5, 1)  {
    ([ 1,35]  0.001481)     ([ 1,36]  0.001251)     ([ 1,37]  0.001846)     ([ 1,38]  0.001472)     ([ 1,39]  0.002045) 
  }
  From:  (5, 2)  {
    ([ 1,36]  0.001375)     ([ 1,37]  0.001441)     ([ 1,38]  0.001164)     ([ 1,39]  0.001069)     ([ 1,40]  0.001591) 
  }
  From:  (5, 3)  {
    ([ 1,37]  0.001941)     ([ 1,38]  0.001180)     ([ 1,39]  0.001505)     ([ 1,40]  0.001003)     ([ 1,41]  0.001717) 
  }
  From:  (5, 4)  {
    ([ 1,38]  0.001115)     ([ 1,39]  0.001023)     ([ 1,40]  0.000803)     ([ 1,41]  0.001922)     ([ 1,42]  0.001118) 
  }
  From:  (5, 5)  {
    ([ 1,39]  0.000713)     ([ 1,40]  0.001588)     ([ 1,41]  0.000801)     ([ 1,42]  0.001481)     ([ 1,43]  0.001240) 
  }
  From:  (5, 6)  {
    ([ 1,40]  0.001228)     ([ 1,41]  0.001767)     ([ 1,42]  0.001904)     ([ 1,43]  0.001137)     ([ 1,44]  0.001584) 
  }
  From:  (5, 7)  {
    ([ 1,41]  0.000912)     ([ 1,42]  0.000933)     ([ 1,43]  0.001303)     ([ 1,44]  0.001005)     ([ 1,45]  0.001378) 
  }
  From:  (5, 8)  {
    ([ 1,42]  0.002014)     ([ 1,43]  0.001053)     ([ 1,44]  0.001586)     ([ 1,45]  0.001475)     ([ 1,46]  0.000818) 
  }
  From:  (5, 9)  {
    ([ 1,43]  0.001870)     ([ 1,44]  0.000881)     ([ 1,45]  0.001384)     ([ 1,46]  0.001752)     ([ 1,47]  0.001692) 
  }
  From:  (6, 1)  {
    ([ 1,44]  0.001091)     ([ 1,45]  0.001563)     ([ 1,46]  0.001443)     ([ 1,47]  0.001107)     ([ 1,48]  0.001176) 
  }
  From:  (6, 2)  {
    ([ 1,45]  0.001680)     ([ 1,46]  0.000737)     ([ 1,47]  0.001949)     ([ 1,48]  0.000720)     ([ 1,49]  0.000965) 
  }
  From:  (6, 3)  {
    ([ 1,46]  0.000936)     ([ 1,47]  0.001286)     ([ 1,48]  0.000721)     ([ 1,49]  0.001000)     ([ 1,50]  0.000807) 
  }
  From:  (6, 4)  {
    ([ 1,47]  0.001116)     ([ 1,48]  0.000921)     ([ 1,49]  0.001969)     ([ 1,50]  0.001771)     ([ 1,51]  0.001765) 
  }
  From:  (6, 5)  {
    ([ 1,48]  0.001550)     ([ 1,49]  0.001158)     ([ 1,50]  0.001414)     ([ 1,51]  0.001475)     ([ 1,52]  0.001072) 
  }
  From:  (6, 6)  {
    ([ 1,49]  0.001654)     ([ 1,50]  0.000974)     ([ 1,51]  0.001181)     ([ 1,52]  0.001052)     ([ 1,53]  0.001738) 
  }
  From:  (6, 7)  {
    ([ 1,50]  0.001501)     ([ 1,51]  0.001516)     ([ 1,52]  0.001900)     ([ 1,53]  0.001263)     ([ 1,54]  0.002007) 
  }
  From:  (6, 8)  {
    ([ 1,51]  0.001184)     ([ 1,52]  0.001250)     ([ 1,53]  0.000775)     ([ 1,54]  0.001214)     ([ 1,55]  0.001712) 
  }
  From:  (6, 9)  {
    ([ 1,52]  0.001835)     ([ 1,53]  0.000770)     ([ 1,54]  0.001244)     ([ 1,55]  0.001617)     ([ 1,56]  0.000840) 
  }
  From:  (7, 1)  {
    ([ 1,53]  0.001915)     ([ 1,54]  0.001366)     ([ 1,55]  0.001725)     ([ 1,56]  0.000707)     ([ 1,57]  0.001685) 
  }
  From:  (7, 2)  {
    ([ 1,54]  0.001732)     ([ 1,55]  0.001194)     ([ 1,56]  0.001735)     ([ 1,57]  0.000883)     ([ 1,58]  0.001703) 
  }
  From:  (7, 3)  {
    ([ 1,55]  0.001851)     ([ 1,56]  0.000735)     ([ 1,57]  0.000936)     ([ 1,58]  0.000861)     ([ 1,59]  0.001276) 
  }
  From:  (7, 4)  {
    ([ 1,56]  0.002057)     ([ 1,57]  0.001457)     ([ 1,58]  0.000773)     ([ 1,59]  0.000911)     ([ 1,60]  0.002078) 
  }
  From:  (7, 5)  {
    ([ 1,57]  0.000966)     ([ 1,58]  0.001127)     ([ 1,59]  0.000886)     ([ 1,60]  0.001021)     ([ 1,61]  0.000873) 
  }
  From:  (7, 6)  {
    ([ 1,58]  0.001962)     ([ 1,59]  0.001272)     ([ 1,60]  0.001813)     ([ 1,61]  0.001373)     ([ 1,62]  0.001114) 
  }
  From:  (7, 7)  {
    ([ 1,59]  0.000874)     ([ 1,60]  0.000953)     ([ 1,61]  0.001159)     ([ 1,62]  0.001198)     ([ 1,63]  0.001309) 
  }
  From:  (7, 8)  {
    ([ 1,60]  0.001323)     ([ 1,61]  0.000741)     ([ 1,62]  0.001177)     ([ 1,63]  0.001869)     ([ 1,64]  0.001782) 
  }
  From:  (7, 9)  {
    ([ 1,61]  0.001024)     ([ 1,62]  0.000773)     ([ 1,63]  0.000707)     ([ 1,64]  0.000841)     ([ 1,65]  0.001284) 
  }
  From:  (8, 1)  {
    ([ 1,62]  0.001267)     ([ 1,63]  0.002028)     ([ 1,64]  0.001954)     ([ 1,65]  0.001694)     ([ 1,66]  0.001700) 
  }
  From:  (8, 2)  {
    ([ 1,63]  0.000986)     ([ 1,64]  0.000838)     ([ 1,65]  0.000864)     ([ 1,66]  0.000853)     ([ 1,67]  0.000923) 
  }
  From:  (8, 3)  {
    ([ 1,64]  0.001813)     ([ 1,65]  0.001637)     ([ 1,66]  0.001553)     ([ 1,67]  0.000782)     ([ 1,68]  0.000904) 
  }
  From:  (8, 4)  {
    ([ 1,65]  0.002090)     ([ 1,66]  0.001504)     ([ 1,67]  0.000873)     ([ 1,68]  0.001680)     ([ 1,69]  0.001653) 
  }
  From:  (8, 5)  {
    ([ 1,66]  0.001296)     ([ 1,67]  0.001135)     ([ 1,68]  0.001113)     ([ 1,69]  0.001357)     ([ 1,70]  0.001783) 
  }
  From:  (8, 6)  {
    ([ 1,67]  0.001562)     ([ 1,68]  0.001185)     ([ 1,69]  0.001570)     ([ 1,70]  0.001161)     ([ 1,71]  0.001440) 
  }
  From:  (8, 7)  {
    ([ 1,68]  0.001414)     ([ 1,69]  0.000852)     ([ 1,70]  0.001105)     ([ 1,71]  0.000947)     ([ 1,72]  0.001192) 
  }
  From:  (8, 8)  {
    ([ 1,69]  0.000938)     ([ 1,70]  0.000968)     ([ 1,71]  0.002003)     ([ 1,72]  0.001943)     ([ 1,73]  0.001466) 
  }
  From:  (8, 9)  {
    ([ 1,70]  0.001518)     ([ 1,71]  0.001803)     ([ 1,72]  0.001556)     ([ 1,73]  0.001054)     ([ 1,74]  0.001063) 
  }
  From:  (9, 1)  {
    ([ 1,71]  0.001547)     ([ 1,72]  0.001892)     ([ 1,73]  0.000748)     ([ 1,74]  0.000963)     ([ 1,75]  0.001214) 
  }
  From:  (9, 2)  {
    ([ 1,72]  0.000958)     ([ 1,73]  0.001796)     ([ 1,74]  0.001763)     ([ 1,75]  0.000742)     ([ 1,76]  0.001940) 
  }
  From:  (9, 3)  {
    ([ 1,73]  0.000740)     ([ 1,74]  0.001269)     ([ 1,75]  0.000837)     ([ 1,76]  0.001166)     ([ 1,77]  0.001120) 
  }
  From:  (9, 4)  {
    ([ 1,74]  0.000962)     ([ 1,75]  0.000769)     ([ 1,76]  0.001581)     ([ 1,77]  0.001523)     ([ 1,78]  0.001333) 
  }
  From:  (9, 5)  {
    ([ 1,75]  0.001963)     ([ 1,76]  0.001649)     ([ 1,77]  0.001191)     ([ 1,78]  0.001121)     ([ 1,79]  0.001703) 
  }
  From:  (9, 6)  {
    ([ 1,76]  0.001238)     ([ 1,77]  0.001425)     ([ 1,78]  0.000847)     ([ 1,79]  0.001509)     ([ 1,80]  0.001610) 
  }
  From:  (9, 7)  {
    ([ 1,77]  0.001698)     ([ 1,78]  0.000779)     ([ 1,79]  0.001642)     ([ 1,80]  0.001220)     ([ 1,81]  0.001405) 
  }
  From:  (9, 8)  {
    ([ 1,78]  0.001124)     ([ 1,79]  0.001242)     ([ 1,80]  0.001655)     ([ 1,81]  0.001825)     ([ 1, 1]  0.002100) 
  }
  From:  (9, 9)  {
    ([ 1,79]  0.002045)     ([ 1,80]  0.001100)     ([ 1,81]  0.001680)     ([ 1, 1]  0.001078)     ([ 1, 2]  0.000898) 
  }
}

Loading data, please wait...