Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_1_OLD
attsefd2.w *
attsefd2.ws *
attvatts.w *
attvatts.ws *
ea1dea1d.w *
ea1dea1d.ws *
ea1dea2c.w *
ea1dea2c.ws *
ea1dea2d.w *
ea1dea2d.ws *
ea1dia1d.w *
ea1dia1d.ws *
ea1uea1u.w *
ea1uea1u.ws *
ea1uea2c.w *
ea1uea2c.ws *
ea1uea2u.w *
ea1uea2u.ws *
ea1uia1u.w *
ea1uia1u.ws *
ea2cea2c.w *
ea2cea2c.ws *
ea2cestg.w *
ea2cestg.ws *
ea2cia2c.w *
ea2cia2c.ws *
ea2dea1d.w *
ea2dea2d.w *
ea2dea2d.ws *
ea2destg.w *
ea2destg.ws *
ea2dia2d.w *
ea2dia2d.ws *
ea2uea1u.w *
ea2uea2u.w *
ea2uea2u.ws *
ea2uestg.w *
ea2uestg.ws *
ea2uia2u.w *
ea2uia2u.ws *
ectlectl.ws *
ectlictl.ws *
efd1efd1.w *
efd1efd1.ws *
efd1efd2.w *
efd1efd2.ws *
efd1exfr.w *
efd1exfr.ws *
efd1ia1d.w
efd1ia1d.ws *
efd1ia1u.w
efd1ia1u.ws *
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1ifd1.ws *
efd1infs.w *
efd1infs.ws *
efd1istg.w *
efd1istg.ws *
efd2ea2c.w *
efd2ea2c.ws *
efd2ea2d.w *
efd2ea2d.ws *
efd2ea2u.w *
efd2ea2u.ws *
efd2efd1.w *
efd2efd1.ws *
efd2efd2.w *
efd2efd2.ws *
efd2estg.w *
efd2ifd2.w *
ena1ea1d.w *
ena1ea1d.ws *
ena1ea1u.w *
ena1ea1u.ws *
enpfexfs.w *
enpfexfs.ws *
enstestg.w *
enstestg.ws *
estgea2c.w *
estgea2c.ws *
estgea2d.w *
estgea2d.ws *
estgea2u.w *
estgea2u.ws *
estgestg.w *
estgestg.ws *
estgexfs.w *
estgexfs.ws *
estgistg.w *
estgistg.ws *
exfrexfr.w *
exfrexfr.ws *
exfrifd1.w *
exfrifd1.ws *
exfrifd2.w *
exfrifd2.ws *
exfrinfr.w *
exfrinfr.ws *
exfsefd2.w *
exfsefd2.ws *
exfsexfr.w *
exfsexfr.ws *
exfsexfs.w *
exfsexfs.ws *
exfsifd1.w *
exfsifd1.ws *
exfsinfs.w *
exfsinfs.ws *
ia1dea1d.w *
ia1dea1d.ws *
ia1uea1u.w *
ia1uea1u.ws *
ia2cea2c.w *
ia2cea2c.ws *
ia2dea2d.w *
ia2dea2d.ws *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1d.ws *
mgnsea1u.w *
mgnsea1u.ws *
weightslist.txt *
                            
% Mon Aug  3 15:42:52 2015

% Input layer: (9, 9)
% Output layer: (1, 81)
% Fanout size: (1, 4)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(estg, ea2u)  {
  From:  (1, 1)  {
    ([ 1,80]  0.000874)     ([ 1,81]  0.001066)     ([ 1, 1]  0.000813)     ([ 1, 2]  0.000836) 
  }
  From:  (1, 2)  {
    ([ 1,81]  0.000774)     ([ 1, 1]  0.001404)     ([ 1, 2]  0.001591)     ([ 1, 3]  0.001209) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.001185)     ([ 1, 2]  0.001482)     ([ 1, 3]  0.001525)     ([ 1, 4]  0.001452) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.001258)     ([ 1, 3]  0.000726)     ([ 1, 4]  0.001191)     ([ 1, 5]  0.001419) 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.001599)     ([ 1, 4]  0.001738)     ([ 1, 5]  0.001845)     ([ 1, 6]  0.001156) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.001281)     ([ 1, 5]  0.001271)     ([ 1, 6]  0.001817)     ([ 1, 7]  0.001713) 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.001598)     ([ 1, 6]  0.001207)     ([ 1, 7]  0.001636)     ([ 1, 8]  0.001450) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.000894)     ([ 1, 7]  0.001064)     ([ 1, 8]  0.000796)     ([ 1, 9]  0.001066) 
  }
  From:  (1, 9)  {
    ([ 1, 7]  0.001734)     ([ 1, 8]  0.001629)     ([ 1, 9]  0.001732)     ([ 1,10]  0.001645) 
  }
  From:  (2, 1)  {
    ([ 1, 8]  0.001255)     ([ 1, 9]  0.001593)     ([ 1,10]  0.001839)     ([ 1,11]  0.001458) 
  }
  From:  (2, 2)  {
    ([ 1, 9]  0.000742)     ([ 1,10]  0.001189)     ([ 1,11]  0.000930)     ([ 1,12]  0.000746) 
  }
  From:  (2, 3)  {
    ([ 1,10]  0.001519)     ([ 1,11]  0.000819)     ([ 1,12]  0.001842)     ([ 1,13]  0.000877) 
  }
  From:  (2, 4)  {
    ([ 1,11]  0.000922)     ([ 1,12]  0.001649)     ([ 1,13]  0.001570)     ([ 1,14]  0.000997) 
  }
  From:  (2, 5)  {
    ([ 1,12]  0.001058)     ([ 1,13]  0.001182)     ([ 1,14]  0.001665)     ([ 1,15]  0.001362) 
  }
  From:  (2, 6)  {
    ([ 1,13]  0.001580)     ([ 1,14]  0.000727)     ([ 1,15]  0.001781)     ([ 1,16]  0.000924) 
  }
  From:  (2, 7)  {
    ([ 1,14]  0.001349)     ([ 1,15]  0.001365)     ([ 1,16]  0.001126)     ([ 1,17]  0.000889) 
  }
  From:  (2, 8)  {
    ([ 1,15]  0.001429)     ([ 1,16]  0.000994)     ([ 1,17]  0.000742)     ([ 1,18]  0.000841) 
  }
  From:  (2, 9)  {
    ([ 1,16]  0.000986)     ([ 1,17]  0.000819)     ([ 1,18]  0.001110)     ([ 1,19]  0.001813) 
  }
  From:  (3, 1)  {
    ([ 1,17]  0.001136)     ([ 1,18]  0.000866)     ([ 1,19]  0.001641)     ([ 1,20]  0.000878) 
  }
  From:  (3, 2)  {
    ([ 1,18]  0.001537)     ([ 1,19]  0.000796)     ([ 1,20]  0.001216)     ([ 1,21]  0.001662) 
  }
  From:  (3, 3)  {
    ([ 1,19]  0.001113)     ([ 1,20]  0.000776)     ([ 1,21]  0.000901)     ([ 1,22]  0.000668) 
  }
  From:  (3, 4)  {
    ([ 1,20]  0.001508)     ([ 1,21]  0.001508)     ([ 1,22]  0.000864)     ([ 1,23]  0.000791) 
  }
  From:  (3, 5)  {
    ([ 1,21]  0.000729)     ([ 1,22]  0.001511)     ([ 1,23]  0.001715)     ([ 1,24]  0.001773) 
  }
  From:  (3, 6)  {
    ([ 1,22]  0.001540)     ([ 1,23]  0.001350)     ([ 1,24]  0.001276)     ([ 1,25]  0.001710) 
  }
  From:  (3, 7)  {
    ([ 1,23]  0.000663)     ([ 1,24]  0.000776)     ([ 1,25]  0.001495)     ([ 1,26]  0.000978) 
  }
  From:  (3, 8)  {
    ([ 1,24]  0.001098)     ([ 1,25]  0.000814)     ([ 1,26]  0.001238)     ([ 1,27]  0.001566) 
  }
  From:  (3, 9)  {
    ([ 1,25]  0.000757)     ([ 1,26]  0.001588)     ([ 1,27]  0.001470)     ([ 1,28]  0.001328) 
  }
  From:  (4, 1)  {
    ([ 1,26]  0.000781)     ([ 1,27]  0.000820)     ([ 1,28]  0.001482)     ([ 1,29]  0.001213) 
  }
  From:  (4, 2)  {
    ([ 1,27]  0.001687)     ([ 1,28]  0.000754)     ([ 1,29]  0.001815)     ([ 1,30]  0.000849) 
  }
  From:  (4, 3)  {
    ([ 1,28]  0.000691)     ([ 1,29]  0.001098)     ([ 1,30]  0.001584)     ([ 1,31]  0.001756) 
  }
  From:  (4, 4)  {
    ([ 1,29]  0.001035)     ([ 1,30]  0.001642)     ([ 1,31]  0.001178)     ([ 1,32]  0.000814) 
  }
  From:  (4, 5)  {
    ([ 1,30]  0.001227)     ([ 1,31]  0.000956)     ([ 1,32]  0.001209)     ([ 1,33]  0.001780) 
  }
  From:  (4, 6)  {
    ([ 1,31]  0.001048)     ([ 1,32]  0.000894)     ([ 1,33]  0.001770)     ([ 1,34]  0.001312) 
  }
  From:  (4, 7)  {
    ([ 1,32]  0.000920)     ([ 1,33]  0.001444)     ([ 1,34]  0.001008)     ([ 1,35]  0.001563) 
  }
  From:  (4, 8)  {
    ([ 1,33]  0.001290)     ([ 1,34]  0.001083)     ([ 1,35]  0.001081)     ([ 1,36]  0.001365) 
  }
  From:  (4, 9)  {
    ([ 1,34]  0.000663)     ([ 1,35]  0.001068)     ([ 1,36]  0.001200)     ([ 1,37]  0.001692) 
  }
  From:  (5, 1)  {
    ([ 1,35]  0.001266)     ([ 1,36]  0.000790)     ([ 1,37]  0.000798)     ([ 1,38]  0.000755) 
  }
  From:  (5, 2)  {
    ([ 1,36]  0.001181)     ([ 1,37]  0.001473)     ([ 1,38]  0.000944)     ([ 1,39]  0.001766) 
  }
  From:  (5, 3)  {
    ([ 1,37]  0.001213)     ([ 1,38]  0.001467)     ([ 1,39]  0.001386)     ([ 1,40]  0.001014) 
  }
  From:  (5, 4)  {
    ([ 1,38]  0.001273)     ([ 1,39]  0.001411)     ([ 1,40]  0.000717)     ([ 1,41]  0.001609) 
  }
  From:  (5, 5)  {
    ([ 1,39]  0.001566)     ([ 1,40]  0.001183)     ([ 1,41]  0.001502)     ([ 1,42]  0.000935) 
  }
  From:  (5, 6)  {
    ([ 1,40]  0.001084)     ([ 1,41]  0.000857)     ([ 1,42]  0.001827)     ([ 1,43]  0.001685) 
  }
  From:  (5, 7)  {
    ([ 1,41]  0.000658)     ([ 1,42]  0.000824)     ([ 1,43]  0.001301)     ([ 1,44]  0.001444) 
  }
  From:  (5, 8)  {
    ([ 1,42]  0.001726)     ([ 1,43]  0.001365)     ([ 1,44]  0.001067)     ([ 1,45]  0.000934) 
  }
  From:  (5, 9)  {
    ([ 1,43]  0.001387)     ([ 1,44]  0.001827)     ([ 1,45]  0.001821)     ([ 1,46]  0.001413) 
  }
  From:  (6, 1)  {
    ([ 1,44]  0.001319)     ([ 1,45]  0.001122)     ([ 1,46]  0.001632)     ([ 1,47]  0.001311) 
  }
  From:  (6, 2)  {
    ([ 1,45]  0.001803)     ([ 1,46]  0.001229)     ([ 1,47]  0.001285)     ([ 1,48]  0.001047) 
  }
  From:  (6, 3)  {
    ([ 1,46]  0.000967)     ([ 1,47]  0.001413)     ([ 1,48]  0.001714)     ([ 1,49]  0.001062) 
  }
  From:  (6, 4)  {
    ([ 1,47]  0.001340)     ([ 1,48]  0.000910)     ([ 1,49]  0.001522)     ([ 1,50]  0.001006) 
  }
  From:  (6, 5)  {
    ([ 1,48]  0.000927)     ([ 1,49]  0.000739)     ([ 1,50]  0.001698)     ([ 1,51]  0.001009) 
  }
  From:  (6, 6)  {
    ([ 1,49]  0.000661)     ([ 1,50]  0.001411)     ([ 1,51]  0.000737)     ([ 1,52]  0.001319) 
  }
  From:  (6, 7)  {
    ([ 1,50]  0.001113)     ([ 1,51]  0.001103)     ([ 1,52]  0.001564)     ([ 1,53]  0.001682) 
  }
  From:  (6, 8)  {
    ([ 1,51]  0.001025)     ([ 1,52]  0.001407)     ([ 1,53]  0.000831)     ([ 1,54]  0.000850) 
  }
  From:  (6, 9)  {
    ([ 1,52]  0.001167)     ([ 1,53]  0.000911)     ([ 1,54]  0.001231)     ([ 1,55]  0.001776) 
  }
  From:  (7, 1)  {
    ([ 1,53]  0.000952)     ([ 1,54]  0.001410)     ([ 1,55]  0.001314)     ([ 1,56]  0.000751) 
  }
  From:  (7, 2)  {
    ([ 1,54]  0.001652)     ([ 1,55]  0.000805)     ([ 1,56]  0.001236)     ([ 1,57]  0.001552) 
  }
  From:  (7, 3)  {
    ([ 1,55]  0.001500)     ([ 1,56]  0.000985)     ([ 1,57]  0.001390)     ([ 1,58]  0.001287) 
  }
  From:  (7, 4)  {
    ([ 1,56]  0.000999)     ([ 1,57]  0.001058)     ([ 1,58]  0.001490)     ([ 1,59]  0.000682) 
  }
  From:  (7, 5)  {
    ([ 1,57]  0.001720)     ([ 1,58]  0.000667)     ([ 1,59]  0.000878)     ([ 1,60]  0.000852) 
  }
  From:  (7, 6)  {
    ([ 1,58]  0.001152)     ([ 1,59]  0.000668)     ([ 1,60]  0.000907)     ([ 1,61]  0.000741) 
  }
  From:  (7, 7)  {
    ([ 1,59]  0.001007)     ([ 1,60]  0.000839)     ([ 1,61]  0.001738)     ([ 1,62]  0.001568) 
  }
  From:  (7, 8)  {
    ([ 1,60]  0.001563)     ([ 1,61]  0.001379)     ([ 1,62]  0.001043)     ([ 1,63]  0.001262) 
  }
  From:  (7, 9)  {
    ([ 1,61]  0.001314)     ([ 1,62]  0.000969)     ([ 1,63]  0.001467)     ([ 1,64]  0.000885) 
  }
  From:  (8, 1)  {
    ([ 1,62]  0.001062)     ([ 1,63]  0.000951)     ([ 1,64]  0.001540)     ([ 1,65]  0.001337) 
  }
  From:  (8, 2)  {
    ([ 1,63]  0.001349)     ([ 1,64]  0.001679)     ([ 1,65]  0.001133)     ([ 1,66]  0.001771) 
  }
  From:  (8, 3)  {
    ([ 1,64]  0.001065)     ([ 1,65]  0.001122)     ([ 1,66]  0.000715)     ([ 1,67]  0.001091) 
  }
  From:  (8, 4)  {
    ([ 1,65]  0.001518)     ([ 1,66]  0.001623)     ([ 1,67]  0.000710)     ([ 1,68]  0.001116) 
  }
  From:  (8, 5)  {
    ([ 1,66]  0.001436)     ([ 1,67]  0.000770)     ([ 1,68]  0.001692)     ([ 1,69]  0.001221) 
  }
  From:  (8, 6)  {
    ([ 1,67]  0.001528)     ([ 1,68]  0.000656)     ([ 1,69]  0.001494)     ([ 1,70]  0.001535) 
  }
  From:  (8, 7)  {
    ([ 1,68]  0.001074)     ([ 1,69]  0.001537)     ([ 1,70]  0.000807)     ([ 1,71]  0.001509) 
  }
  From:  (8, 8)  {
    ([ 1,69]  0.001637)     ([ 1,70]  0.000680)     ([ 1,71]  0.000852)     ([ 1,72]  0.000788) 
  }
  From:  (8, 9)  {
    ([ 1,70]  0.001144)     ([ 1,71]  0.001813)     ([ 1,72]  0.001299)     ([ 1,73]  0.000712) 
  }
  From:  (9, 1)  {
    ([ 1,71]  0.000831)     ([ 1,72]  0.001831)     ([ 1,73]  0.000878)     ([ 1,74]  0.001016) 
  }
  From:  (9, 2)  {
    ([ 1,72]  0.000810)     ([ 1,73]  0.000926)     ([ 1,74]  0.000798)     ([ 1,75]  0.001732) 
  }
  From:  (9, 3)  {
    ([ 1,73]  0.001140)     ([ 1,74]  0.001604)     ([ 1,75]  0.001227)     ([ 1,76]  0.001005) 
  }
  From:  (9, 4)  {
    ([ 1,74]  0.000799)     ([ 1,75]  0.000867)     ([ 1,76]  0.001044)     ([ 1,77]  0.001077) 
  }
  From:  (9, 5)  {
    ([ 1,75]  0.001172)     ([ 1,76]  0.001184)     ([ 1,77]  0.000685)     ([ 1,78]  0.001059) 
  }
  From:  (9, 6)  {
    ([ 1,76]  0.001652)     ([ 1,77]  0.001577)     ([ 1,78]  0.000928)     ([ 1,79]  0.000713) 
  }
  From:  (9, 7)  {
    ([ 1,77]  0.000656)     ([ 1,78]  0.000771)     ([ 1,79]  0.001150)     ([ 1,80]  0.001136) 
  }
  From:  (9, 8)  {
    ([ 1,78]  0.001788)     ([ 1,79]  0.001725)     ([ 1,80]  0.001502)     ([ 1,81]  0.001507) 
  }
  From:  (9, 9)  {
    ([ 1,79]  0.000895)     ([ 1,80]  0.000768)     ([ 1,81]  0.000791)     ([ 1, 1]  0.000781) 
  }
}

Loading data, please wait...