Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_original_with_feedback
attsefd2.w *
attvatts.w *
ea1dea1d.w *
ea1dea2c.w *
ea1dea2d.w *
ea1dia1d.w *
ea1uea1u.w *
ea1uea2c.w *
ea1uea2u.w *
ea1uia1u.w *
ea2cea2c.w *
ea2cestg.w *
ea2cia2c.w *
ea2dea2d.w *
ea2destg.w *
ea2dia2d.w *
ea2uea2u.w *
ea2uestg.w *
ea2uia2u.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ia1d.bak *
efd1ia1d.w
efd1ia1d.ws
efd1ia1u.bak *
efd1ia1u.w
efd1ia1u.ws
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1infs.w *
efd1istg.w *
efd2ea2c.w *
efd2ea2d.w *
efd2ea2u.w *
efd2efd1.w *
efd2efd2.w *
efd2estg.w *
efd2ifd2.w *
estgea2c.w *
estgea2d.w *
estgea2u.w *
estgestg.w *
estgexfs.w *
estgistg.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
ia1dea1d.w *
ia1uea1u.w *
ia2cea2c.w *
ia2dea2d.w *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1u.w *
netgen1 *
neuralnet.json
weightslist.txt *
                            
% Tue Apr 25 17:10:04 2000

% Input layer: (9, 9)
% Output layer: (1, 81)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(efd2, ea2d)  {
  From:  (1, 1)  {
    ([ 1,80]  0.002014)     ([ 1,81]  0.001419)     ([ 1, 1]  0.001960)     ([ 1, 2]  0.001674)     ([ 1, 3]  0.001579) 
  }
  From:  (1, 2)  {
    ([ 1,81]  0.001981)     ([ 1, 1]  0.001013)     ([ 1, 2]  0.000959)     ([ 1, 3]  0.001549)     ([ 1, 4]  0.000749) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.001136)     ([ 1, 2]  0.000848)     ([ 1, 3]  0.001090)     ([ 1, 4]  0.000921)     ([ 1, 5]  0.001114) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.001141)     ([ 1, 3]  0.001491)     ([ 1, 4]  0.001561)     ([ 1, 5]  0.000878)     ([ 1, 6]  0.001635) 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.001118)     ([ 1, 4]  0.000900)     ([ 1, 5]  0.001309)     ([ 1, 6]  0.001504)     ([ 1, 7]  0.001004) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.001962)     ([ 1, 5]  0.001650)     ([ 1, 6]  0.001805)     ([ 1, 7]  0.001451)     ([ 1, 8]  0.000856) 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.001156)     ([ 1, 6]  0.001376)     ([ 1, 7]  0.001814)     ([ 1, 8]  0.002034)     ([ 1, 9]  0.000758) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.001382)     ([ 1, 7]  0.001676)     ([ 1, 8]  0.001588)     ([ 1, 9]  0.001977)     ([ 1,10]  0.001403) 
  }
  From:  (1, 9)  {
    ([ 1, 7]  0.002039)     ([ 1, 8]  0.001122)     ([ 1, 9]  0.001447)     ([ 1,10]  0.002049)     ([ 1,11]  0.001758) 
  }
  From:  (2, 1)  {
    ([ 1, 8]  0.001782)     ([ 1, 9]  0.001253)     ([ 1,10]  0.000989)     ([ 1,11]  0.001068)     ([ 1,12]  0.001961) 
  }
  From:  (2, 2)  {
    ([ 1, 9]  0.001207)     ([ 1,10]  0.001479)     ([ 1,11]  0.001826)     ([ 1,12]  0.001771)     ([ 1,13]  0.001004) 
  }
  From:  (2, 3)  {
    ([ 1,10]  0.002070)     ([ 1,11]  0.001710)     ([ 1,12]  0.001777)     ([ 1,13]  0.000925)     ([ 1,14]  0.002019) 
  }
  From:  (2, 4)  {
    ([ 1,11]  0.001580)     ([ 1,12]  0.000914)     ([ 1,13]  0.001946)     ([ 1,14]  0.001061)     ([ 1,15]  0.001796) 
  }
  From:  (2, 5)  {
    ([ 1,12]  0.001270)     ([ 1,13]  0.001228)     ([ 1,14]  0.001716)     ([ 1,15]  0.001466)     ([ 1,16]  0.001478) 
  }
  From:  (2, 6)  {
    ([ 1,13]  0.001751)     ([ 1,14]  0.001494)     ([ 1,15]  0.001349)     ([ 1,16]  0.001107)     ([ 1,17]  0.001736) 
  }
  From:  (2, 7)  {
    ([ 1,14]  0.001812)     ([ 1,15]  0.001114)     ([ 1,16]  0.001443)     ([ 1,17]  0.000705)     ([ 1,18]  0.001884) 
  }
  From:  (2, 8)  {
    ([ 1,15]  0.001404)     ([ 1,16]  0.000721)     ([ 1,17]  0.001080)     ([ 1,18]  0.000787)     ([ 1,19]  0.002093) 
  }
  From:  (2, 9)  {
    ([ 1,16]  0.000991)     ([ 1,17]  0.001599)     ([ 1,18]  0.001858)     ([ 1,19]  0.001696)     ([ 1,20]  0.001968) 
  }
  From:  (3, 1)  {
    ([ 1,17]  0.001511)     ([ 1,18]  0.001378)     ([ 1,19]  0.001378)     ([ 1,20]  0.001595)     ([ 1,21]  0.000834) 
  }
  From:  (3, 2)  {
    ([ 1,18]  0.001365)     ([ 1,19]  0.001996)     ([ 1,20]  0.000924)     ([ 1,21]  0.001244)     ([ 1,22]  0.001366) 
  }
  From:  (3, 3)  {
    ([ 1,19]  0.001481)     ([ 1,20]  0.000786)     ([ 1,21]  0.001687)     ([ 1,22]  0.001714)     ([ 1,23]  0.001015) 
  }
  From:  (3, 4)  {
    ([ 1,20]  0.001871)     ([ 1,21]  0.001459)     ([ 1,22]  0.000845)     ([ 1,23]  0.001951)     ([ 1,24]  0.001407) 
  }
  From:  (3, 5)  {
    ([ 1,21]  0.001215)     ([ 1,22]  0.000751)     ([ 1,23]  0.001148)     ([ 1,24]  0.001062)     ([ 1,25]  0.002019) 
  }
  From:  (3, 6)  {
    ([ 1,22]  0.001666)     ([ 1,23]  0.001670)     ([ 1,24]  0.001329)     ([ 1,25]  0.002038)     ([ 1,26]  0.001426) 
  }
  From:  (3, 7)  {
    ([ 1,23]  0.001093)     ([ 1,24]  0.001615)     ([ 1,25]  0.000920)     ([ 1,26]  0.001683)     ([ 1,27]  0.001179) 
  }
  From:  (3, 8)  {
    ([ 1,24]  0.001338)     ([ 1,25]  0.001193)     ([ 1,26]  0.001560)     ([ 1,27]  0.000704)     ([ 1,28]  0.000813) 
  }
  From:  (3, 9)  {
    ([ 1,25]  0.001625)     ([ 1,26]  0.000779)     ([ 1,27]  0.001552)     ([ 1,28]  0.002067)     ([ 1,29]  0.000982) 
  }
  From:  (4, 1)  {
    ([ 1,26]  0.001567)     ([ 1,27]  0.000815)     ([ 1,28]  0.002075)     ([ 1,29]  0.002004)     ([ 1,30]  0.001005) 
  }
  From:  (4, 2)  {
    ([ 1,27]  0.000930)     ([ 1,28]  0.001795)     ([ 1,29]  0.001714)     ([ 1,30]  0.001426)     ([ 1,31]  0.000704) 
  }
  From:  (4, 3)  {
    ([ 1,28]  0.001970)     ([ 1,29]  0.001934)     ([ 1,30]  0.001712)     ([ 1,31]  0.001371)     ([ 1,32]  0.001671) 
  }
  From:  (4, 4)  {
    ([ 1,29]  0.000971)     ([ 1,30]  0.001984)     ([ 1,31]  0.001820)     ([ 1,32]  0.001031)     ([ 1,33]  0.001181) 
  }
  From:  (4, 5)  {
    ([ 1,30]  0.000706)     ([ 1,31]  0.001202)     ([ 1,32]  0.001489)     ([ 1,33]  0.001991)     ([ 1,34]  0.000756) 
  }
  From:  (4, 6)  {
    ([ 1,31]  0.001547)     ([ 1,32]  0.002059)     ([ 1,33]  0.001510)     ([ 1,34]  0.001606)     ([ 1,35]  0.001626) 
  }
  From:  (4, 7)  {
    ([ 1,32]  0.001675)     ([ 1,33]  0.001889)     ([ 1,34]  0.000822)     ([ 1,35]  0.001739)     ([ 1,36]  0.001950) 
  }
  From:  (4, 8)  {
    ([ 1,33]  0.000751)     ([ 1,34]  0.001337)     ([ 1,35]  0.002094)     ([ 1,36]  0.000912)     ([ 1,37]  0.000827) 
  }
  From:  (4, 9)  {
    ([ 1,34]  0.001293)     ([ 1,35]  0.001079)     ([ 1,36]  0.001658)     ([ 1,37]  0.001872)     ([ 1,38]  0.002037) 
  }
  From:  (5, 1)  {
    ([ 1,35]  0.001274)     ([ 1,36]  0.001570)     ([ 1,37]  0.000748)     ([ 1,38]  0.001213)     ([ 1,39]  0.000914) 
  }
  From:  (5, 2)  {
    ([ 1,36]  0.001815)     ([ 1,37]  0.001676)     ([ 1,38]  0.001013)     ([ 1,39]  0.001228)     ([ 1,40]  0.001842) 
  }
  From:  (5, 3)  {
    ([ 1,37]  0.001873)     ([ 1,38]  0.001505)     ([ 1,39]  0.001314)     ([ 1,40]  0.000917)     ([ 1,41]  0.001078) 
  }
  From:  (5, 4)  {
    ([ 1,38]  0.000914)     ([ 1,39]  0.001546)     ([ 1,40]  0.001486)     ([ 1,41]  0.001289)     ([ 1,42]  0.001118) 
  }
  From:  (5, 5)  {
    ([ 1,39]  0.000898)     ([ 1,40]  0.000710)     ([ 1,41]  0.000883)     ([ 1,42]  0.001467)     ([ 1,43]  0.001325) 
  }
  From:  (5, 6)  {
    ([ 1,40]  0.000763)     ([ 1,41]  0.001129)     ([ 1,42]  0.002068)     ([ 1,43]  0.001688)     ([ 1,44]  0.001373) 
  }
  From:  (5, 7)  {
    ([ 1,41]  0.001918)     ([ 1,42]  0.001650)     ([ 1,43]  0.002063)     ([ 1,44]  0.001945)     ([ 1,45]  0.001962) 
  }
  From:  (5, 8)  {
    ([ 1,42]  0.002043)     ([ 1,43]  0.001029)     ([ 1,44]  0.001642)     ([ 1,45]  0.000732)     ([ 1,46]  0.000928) 
  }
  From:  (5, 9)  {
    ([ 1,43]  0.002040)     ([ 1,44]  0.000724)     ([ 1,45]  0.000794)     ([ 1,46]  0.001171)     ([ 1,47]  0.001936) 
  }
  From:  (6, 1)  {
    ([ 1,44]  0.001164)     ([ 1,45]  0.001832)     ([ 1,46]  0.001136)     ([ 1,47]  0.001163)     ([ 1,48]  0.001379) 
  }
  From:  (6, 2)  {
    ([ 1,45]  0.000810)     ([ 1,46]  0.000905)     ([ 1,47]  0.000796)     ([ 1,48]  0.001326)     ([ 1,49]  0.001953) 
  }
  From:  (6, 3)  {
    ([ 1,46]  0.001145)     ([ 1,47]  0.001952)     ([ 1,48]  0.001711)     ([ 1,49]  0.001150)     ([ 1,50]  0.001334) 
  }
  From:  (6, 4)  {
    ([ 1,47]  0.001309)     ([ 1,48]  0.001151)     ([ 1,49]  0.001643)     ([ 1,50]  0.001985)     ([ 1,51]  0.001128) 
  }
  From:  (6, 5)  {
    ([ 1,48]  0.001937)     ([ 1,49]  0.001142)     ([ 1,50]  0.000771)     ([ 1,51]  0.001673)     ([ 1,52]  0.002008) 
  }
  From:  (6, 6)  {
    ([ 1,49]  0.001753)     ([ 1,50]  0.001248)     ([ 1,51]  0.001604)     ([ 1,52]  0.001042)     ([ 1,53]  0.001999) 
  }
  From:  (6, 7)  {
    ([ 1,50]  0.001832)     ([ 1,51]  0.001812)     ([ 1,52]  0.001626)     ([ 1,53]  0.001613)     ([ 1,54]  0.000776) 
  }
  From:  (6, 8)  {
    ([ 1,51]  0.000817)     ([ 1,52]  0.001857)     ([ 1,53]  0.001896)     ([ 1,54]  0.001947)     ([ 1,55]  0.000743) 
  }
  From:  (6, 9)  {
    ([ 1,52]  0.001646)     ([ 1,53]  0.001990)     ([ 1,54]  0.001536)     ([ 1,55]  0.001310)     ([ 1,56]  0.001696) 
  }
  From:  (7, 1)  {
    ([ 1,53]  0.001732)     ([ 1,54]  0.001231)     ([ 1,55]  0.000782)     ([ 1,56]  0.001529)     ([ 1,57]  0.000906) 
  }
  From:  (7, 2)  {
    ([ 1,54]  0.001980)     ([ 1,55]  0.001611)     ([ 1,56]  0.001709)     ([ 1,57]  0.001399)     ([ 1,58]  0.000740) 
  }
  From:  (7, 3)  {
    ([ 1,55]  0.001997)     ([ 1,56]  0.000930)     ([ 1,57]  0.001511)     ([ 1,58]  0.001115)     ([ 1,59]  0.001404) 
  }
  From:  (7, 4)  {
    ([ 1,56]  0.001261)     ([ 1,57]  0.001753)     ([ 1,58]  0.000945)     ([ 1,59]  0.001488)     ([ 1,60]  0.000862) 
  }
  From:  (7, 5)  {
    ([ 1,57]  0.001183)     ([ 1,58]  0.000867)     ([ 1,59]  0.000752)     ([ 1,60]  0.001426)     ([ 1,61]  0.001221) 
  }
  From:  (7, 6)  {
    ([ 1,58]  0.000769)     ([ 1,59]  0.001218)     ([ 1,60]  0.001265)     ([ 1,61]  0.001366)     ([ 1,62]  0.001262) 
  }
  From:  (7, 7)  {
    ([ 1,59]  0.001454)     ([ 1,60]  0.001399)     ([ 1,61]  0.001534)     ([ 1,62]  0.002088)     ([ 1,63]  0.001867) 
  }
  From:  (7, 8)  {
    ([ 1,60]  0.001399)     ([ 1,61]  0.001003)     ([ 1,62]  0.001911)     ([ 1,63]  0.000801)     ([ 1,64]  0.001394) 
  }
  From:  (7, 9)  {
    ([ 1,61]  0.001016)     ([ 1,62]  0.001155)     ([ 1,63]  0.001139)     ([ 1,64]  0.001386)     ([ 1,65]  0.001181) 
  }
  From:  (8, 1)  {
    ([ 1,62]  0.001230)     ([ 1,63]  0.001926)     ([ 1,64]  0.000752)     ([ 1,65]  0.001823)     ([ 1,66]  0.001957) 
  }
  From:  (8, 2)  {
    ([ 1,63]  0.001287)     ([ 1,64]  0.000799)     ([ 1,65]  0.001348)     ([ 1,66]  0.001971)     ([ 1,67]  0.000890) 
  }
  From:  (8, 3)  {
    ([ 1,64]  0.001325)     ([ 1,65]  0.001863)     ([ 1,66]  0.001454)     ([ 1,67]  0.001588)     ([ 1,68]  0.001742) 
  }
  From:  (8, 4)  {
    ([ 1,65]  0.001407)     ([ 1,66]  0.001193)     ([ 1,67]  0.002010)     ([ 1,68]  0.001352)     ([ 1,69]  0.001289) 
  }
  From:  (8, 5)  {
    ([ 1,66]  0.002010)     ([ 1,67]  0.000842)     ([ 1,68]  0.001817)     ([ 1,69]  0.001965)     ([ 1,70]  0.001965) 
  }
  From:  (8, 6)  {
    ([ 1,67]  0.001284)     ([ 1,68]  0.001800)     ([ 1,69]  0.001995)     ([ 1,70]  0.001665)     ([ 1,71]  0.001710) 
  }
  From:  (8, 7)  {
    ([ 1,68]  0.001912)     ([ 1,69]  0.000929)     ([ 1,70]  0.001819)     ([ 1,71]  0.001293)     ([ 1,72]  0.001276) 
  }
  From:  (8, 8)  {
    ([ 1,69]  0.001310)     ([ 1,70]  0.001465)     ([ 1,71]  0.002081)     ([ 1,72]  0.000913)     ([ 1,73]  0.001827) 
  }
  From:  (8, 9)  {
    ([ 1,70]  0.001533)     ([ 1,71]  0.000952)     ([ 1,72]  0.000793)     ([ 1,73]  0.001021)     ([ 1,74]  0.000793) 
  }
  From:  (9, 1)  {
    ([ 1,71]  0.000972)     ([ 1,72]  0.001577)     ([ 1,73]  0.001954)     ([ 1,74]  0.001191)     ([ 1,75]  0.001793) 
  }
  From:  (9, 2)  {
    ([ 1,72]  0.000805)     ([ 1,73]  0.001410)     ([ 1,74]  0.001012)     ([ 1,75]  0.002058)     ([ 1,76]  0.001761) 
  }
  From:  (9, 3)  {
    ([ 1,73]  0.001610)     ([ 1,74]  0.001176)     ([ 1,75]  0.001436)     ([ 1,76]  0.001260)     ([ 1,77]  0.000747) 
  }
  From:  (9, 4)  {
    ([ 1,74]  0.001678)     ([ 1,75]  0.001040)     ([ 1,76]  0.001547)     ([ 1,77]  0.001851)     ([ 1,78]  0.000952) 
  }
  From:  (9, 5)  {
    ([ 1,75]  0.001248)     ([ 1,76]  0.001824)     ([ 1,77]  0.001428)     ([ 1,78]  0.001927)     ([ 1,79]  0.000825) 
  }
  From:  (9, 6)  {
    ([ 1,76]  0.001160)     ([ 1,77]  0.001887)     ([ 1,78]  0.001393)     ([ 1,79]  0.000933)     ([ 1,80]  0.001107) 
  }
  From:  (9, 7)  {
    ([ 1,77]  0.001881)     ([ 1,78]  0.001783)     ([ 1,79]  0.000854)     ([ 1,80]  0.001324)     ([ 1,81]  0.002077) 
  }
  From:  (9, 8)  {
    ([ 1,78]  0.001401)     ([ 1,79]  0.000759)     ([ 1,80]  0.001137)     ([ 1,81]  0.001345)     ([ 1, 1]  0.001308) 
  }
  From:  (9, 9)  {
    ([ 1,79]  0.001044)     ([ 1,80]  0.001238)     ([ 1,81]  0.001944)     ([ 1, 1]  0.000898)     ([ 1, 2]  0.001673) 
  }
}

Loading data, please wait...