ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206337.

Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
auditory_model
subject_original_with_feedback
attsefd2.w *
attvatts.w *
ea1dea1d.w *
ea1dea2c.w *
ea1dea2d.w *
ea1dia1d.w *
ea1uea1u.w *
ea1uea2c.w *
ea1uea2u.w *
ea1uia1u.w *
ea2cea2c.w *
ea2cestg.w *
ea2cia2c.w *
ea2dea2d.w *
ea2destg.w *
ea2dia2d.w *
ea2uea2u.w *
ea2uestg.w *
ea2uia2u.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ia1d.bak *
efd1ia1d.w
efd1ia1d.ws
efd1ia1u.bak *
efd1ia1u.w
efd1ia1u.ws
efd1ia2c.w *
efd1ia2c.ws *
efd1ia2d.w *
efd1ia2d.ws *
efd1ia2u.w *
efd1ia2u.ws *
efd1ifd1.w *
efd1infs.w *
efd1istg.w *
efd2ea2c.w *
efd2ea2d.w *
efd2ea2u.w *
efd2efd1.w *
efd2efd2.w *
efd2estg.w *
efd2ifd2.w *
estgea2c.w *
estgea2d.w *
estgea2u.w *
estgestg.w *
estgexfs.w *
estgistg.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
ia1dea1d.w *
ia1uea1u.w *
ia2cea2c.w *
ia2dea2d.w *
ia2uea2u.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
istgestg.w *
mgnsea1d.w *
mgnsea1u.w *
netgen1 *
neuralnet.json
weightslist.txt *
                            
% Fri Oct 27 12:52:06 2000

% Input layer: (1, 81)
% Output layer: (1, 81)
% Fanout size: (1, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ia1u, ea1u)  {
  From:  (1, 1)  {
    ([ 1, 1] -0.150000) 
  }
  From:  (1, 2)  {
    ([ 1, 2] -0.150000) 
  }
  From:  (1, 3)  {
    ([ 1, 3] -0.150000) 
  }
  From:  (1, 4)  {
    ([ 1, 4] -0.150000) 
  }
  From:  (1, 5)  {
    ([ 1, 5] -0.150000) 
  }
  From:  (1, 6)  {
    ([ 1, 6] -0.150000) 
  }
  From:  (1, 7)  {
    ([ 1, 7] -0.150000) 
  }
  From:  (1, 8)  {
    ([ 1, 8] -0.150000) 
  }
  From:  (1, 9)  {
    ([ 1, 9] -0.150000) 
  }
  From:  (1, 10)  {
    ([ 1,10] -0.150000) 
  }
  From:  (1, 11)  {
    ([ 1,11] -0.150000) 
  }
  From:  (1, 12)  {
    ([ 1,12] -0.150000) 
  }
  From:  (1, 13)  {
    ([ 1,13] -0.150000) 
  }
  From:  (1, 14)  {
    ([ 1,14] -0.150000) 
  }
  From:  (1, 15)  {
    ([ 1,15] -0.150000) 
  }
  From:  (1, 16)  {
    ([ 1,16] -0.150000) 
  }
  From:  (1, 17)  {
    ([ 1,17] -0.150000) 
  }
  From:  (1, 18)  {
    ([ 1,18] -0.150000) 
  }
  From:  (1, 19)  {
    ([ 1,19] -0.150000) 
  }
  From:  (1, 20)  {
    ([ 1,20] -0.150000) 
  }
  From:  (1, 21)  {
    ([ 1,21] -0.150000) 
  }
  From:  (1, 22)  {
    ([ 1,22] -0.150000) 
  }
  From:  (1, 23)  {
    ([ 1,23] -0.150000) 
  }
  From:  (1, 24)  {
    ([ 1,24] -0.150000) 
  }
  From:  (1, 25)  {
    ([ 1,25] -0.150000) 
  }
  From:  (1, 26)  {
    ([ 1,26] -0.150000) 
  }
  From:  (1, 27)  {
    ([ 1,27] -0.150000) 
  }
  From:  (1, 28)  {
    ([ 1,28] -0.150000) 
  }
  From:  (1, 29)  {
    ([ 1,29] -0.150000) 
  }
  From:  (1, 30)  {
    ([ 1,30] -0.150000) 
  }
  From:  (1, 31)  {
    ([ 1,31] -0.150000) 
  }
  From:  (1, 32)  {
    ([ 1,32] -0.150000) 
  }
  From:  (1, 33)  {
    ([ 1,33] -0.150000) 
  }
  From:  (1, 34)  {
    ([ 1,34] -0.150000) 
  }
  From:  (1, 35)  {
    ([ 1,35] -0.150000) 
  }
  From:  (1, 36)  {
    ([ 1,36] -0.150000) 
  }
  From:  (1, 37)  {
    ([ 1,37] -0.150000) 
  }
  From:  (1, 38)  {
    ([ 1,38] -0.150000) 
  }
  From:  (1, 39)  {
    ([ 1,39] -0.150000) 
  }
  From:  (1, 40)  {
    ([ 1,40] -0.150000) 
  }
  From:  (1, 41)  {
    ([ 1,41] -0.150000) 
  }
  From:  (1, 42)  {
    ([ 1,42] -0.150000) 
  }
  From:  (1, 43)  {
    ([ 1,43] -0.150000) 
  }
  From:  (1, 44)  {
    ([ 1,44] -0.150000) 
  }
  From:  (1, 45)  {
    ([ 1,45] -0.150000) 
  }
  From:  (1, 46)  {
    ([ 1,46] -0.150000) 
  }
  From:  (1, 47)  {
    ([ 1,47] -0.150000) 
  }
  From:  (1, 48)  {
    ([ 1,48] -0.150000) 
  }
  From:  (1, 49)  {
    ([ 1,49] -0.150000) 
  }
  From:  (1, 50)  {
    ([ 1,50] -0.150000) 
  }
  From:  (1, 51)  {
    ([ 1,51] -0.150000) 
  }
  From:  (1, 52)  {
    ([ 1,52] -0.150000) 
  }
  From:  (1, 53)  {
    ([ 1,53] -0.150000) 
  }
  From:  (1, 54)  {
    ([ 1,54] -0.150000) 
  }
  From:  (1, 55)  {
    ([ 1,55] -0.150000) 
  }
  From:  (1, 56)  {
    ([ 1,56] -0.150000) 
  }
  From:  (1, 57)  {
    ([ 1,57] -0.150000) 
  }
  From:  (1, 58)  {
    ([ 1,58] -0.150000) 
  }
  From:  (1, 59)  {
    ([ 1,59] -0.150000) 
  }
  From:  (1, 60)  {
    ([ 1,60] -0.150000) 
  }
  From:  (1, 61)  {
    ([ 1,61] -0.150000) 
  }
  From:  (1, 62)  {
    ([ 1,62] -0.150000) 
  }
  From:  (1, 63)  {
    ([ 1,63] -0.150000) 
  }
  From:  (1, 64)  {
    ([ 1,64] -0.150000) 
  }
  From:  (1, 65)  {
    ([ 1,65] -0.150000) 
  }
  From:  (1, 66)  {
    ([ 1,66] -0.150000) 
  }
  From:  (1, 67)  {
    ([ 1,67] -0.150000) 
  }
  From:  (1, 68)  {
    ([ 1,68] -0.150000) 
  }
  From:  (1, 69)  {
    ([ 1,69] -0.150000) 
  }
  From:  (1, 70)  {
    ([ 1,70] -0.150000) 
  }
  From:  (1, 71)  {
    ([ 1,71] -0.150000) 
  }
  From:  (1, 72)  {
    ([ 1,72] -0.150000) 
  }
  From:  (1, 73)  {
    ([ 1,73] -0.150000) 
  }
  From:  (1, 74)  {
    ([ 1,74] -0.150000) 
  }
  From:  (1, 75)  {
    ([ 1,75] -0.150000) 
  }
  From:  (1, 76)  {
    ([ 1,76] -0.150000) 
  }
  From:  (1, 77)  {
    ([ 1,77] -0.150000) 
  }
  From:  (1, 78)  {
    ([ 1,78] -0.150000) 
  }
  From:  (1, 79)  {
    ([ 1,79] -0.150000) 
  }
  From:  (1, 80)  {
    ([ 1,80] -0.150000) 
  }
  From:  (1, 81)  {
    ([ 1,81] -0.150000) 
  }
}

Loading data, please wait...