Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_12
output.36trials
output.RestingState
output.test
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 13:28:07 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(exfr, infr)  {
  From:  (1, 1)  {
    ([ 1, 1]  0.150000) 
  }
  From:  (1, 2)  {
    ([ 1, 2]  0.150000) 
  }
  From:  (1, 3)  {
    ([ 1, 3]  0.150000) 
  }
  From:  (1, 4)  {
    ([ 1, 4]  0.150000) 
  }
  From:  (1, 5)  {
    ([ 1, 5]  0.150000) 
  }
  From:  (1, 6)  {
    ([ 1, 6]  0.150000) 
  }
  From:  (1, 7)  {
    ([ 1, 7]  0.150000) 
  }
  From:  (1, 8)  {
    ([ 1, 8]  0.150000) 
  }
  From:  (1, 9)  {
    ([ 1, 9]  0.150000) 
  }
  From:  (2, 1)  {
    ([ 2, 1]  0.150000) 
  }
  From:  (2, 2)  {
    ([ 2, 2]  0.150000) 
  }
  From:  (2, 3)  {
    ([ 2, 3]  0.150000) 
  }
  From:  (2, 4)  {
    ([ 2, 4]  0.150000) 
  }
  From:  (2, 5)  {
    ([ 2, 5]  0.150000) 
  }
  From:  (2, 6)  {
    ([ 2, 6]  0.150000) 
  }
  From:  (2, 7)  {
    ([ 2, 7]  0.150000) 
  }
  From:  (2, 8)  {
    ([ 2, 8]  0.150000) 
  }
  From:  (2, 9)  {
    ([ 2, 9]  0.150000) 
  }
  From:  (3, 1)  {
    ([ 3, 1]  0.150000) 
  }
  From:  (3, 2)  {
    ([ 3, 2]  0.150000) 
  }
  From:  (3, 3)  {
    ([ 3, 3]  0.150000) 
  }
  From:  (3, 4)  {
    ([ 3, 4]  0.150000) 
  }
  From:  (3, 5)  {
    ([ 3, 5]  0.150000) 
  }
  From:  (3, 6)  {
    ([ 3, 6]  0.150000) 
  }
  From:  (3, 7)  {
    ([ 3, 7]  0.150000) 
  }
  From:  (3, 8)  {
    ([ 3, 8]  0.150000) 
  }
  From:  (3, 9)  {
    ([ 3, 9]  0.150000) 
  }
  From:  (4, 1)  {
    ([ 4, 1]  0.150000) 
  }
  From:  (4, 2)  {
    ([ 4, 2]  0.150000) 
  }
  From:  (4, 3)  {
    ([ 4, 3]  0.150000) 
  }
  From:  (4, 4)  {
    ([ 4, 4]  0.150000) 
  }
  From:  (4, 5)  {
    ([ 4, 5]  0.150000) 
  }
  From:  (4, 6)  {
    ([ 4, 6]  0.150000) 
  }
  From:  (4, 7)  {
    ([ 4, 7]  0.150000) 
  }
  From:  (4, 8)  {
    ([ 4, 8]  0.150000) 
  }
  From:  (4, 9)  {
    ([ 4, 9]  0.150000) 
  }
  From:  (5, 1)  {
    ([ 5, 1]  0.150000) 
  }
  From:  (5, 2)  {
    ([ 5, 2]  0.150000) 
  }
  From:  (5, 3)  {
    ([ 5, 3]  0.150000) 
  }
  From:  (5, 4)  {
    ([ 5, 4]  0.150000) 
  }
  From:  (5, 5)  {
    ([ 5, 5]  0.150000) 
  }
  From:  (5, 6)  {
    ([ 5, 6]  0.150000) 
  }
  From:  (5, 7)  {
    ([ 5, 7]  0.150000) 
  }
  From:  (5, 8)  {
    ([ 5, 8]  0.150000) 
  }
  From:  (5, 9)  {
    ([ 5, 9]  0.150000) 
  }
  From:  (6, 1)  {
    ([ 6, 1]  0.150000) 
  }
  From:  (6, 2)  {
    ([ 6, 2]  0.150000) 
  }
  From:  (6, 3)  {
    ([ 6, 3]  0.150000) 
  }
  From:  (6, 4)  {
    ([ 6, 4]  0.150000) 
  }
  From:  (6, 5)  {
    ([ 6, 5]  0.150000) 
  }
  From:  (6, 6)  {
    ([ 6, 6]  0.150000) 
  }
  From:  (6, 7)  {
    ([ 6, 7]  0.150000) 
  }
  From:  (6, 8)  {
    ([ 6, 8]  0.150000) 
  }
  From:  (6, 9)  {
    ([ 6, 9]  0.150000) 
  }
  From:  (7, 1)  {
    ([ 7, 1]  0.150000) 
  }
  From:  (7, 2)  {
    ([ 7, 2]  0.150000) 
  }
  From:  (7, 3)  {
    ([ 7, 3]  0.150000) 
  }
  From:  (7, 4)  {
    ([ 7, 4]  0.150000) 
  }
  From:  (7, 5)  {
    ([ 7, 5]  0.150000) 
  }
  From:  (7, 6)  {
    ([ 7, 6]  0.150000) 
  }
  From:  (7, 7)  {
    ([ 7, 7]  0.150000) 
  }
  From:  (7, 8)  {
    ([ 7, 8]  0.150000) 
  }
  From:  (7, 9)  {
    ([ 7, 9]  0.150000) 
  }
  From:  (8, 1)  {
    ([ 8, 1]  0.150000) 
  }
  From:  (8, 2)  {
    ([ 8, 2]  0.150000) 
  }
  From:  (8, 3)  {
    ([ 8, 3]  0.150000) 
  }
  From:  (8, 4)  {
    ([ 8, 4]  0.150000) 
  }
  From:  (8, 5)  {
    ([ 8, 5]  0.150000) 
  }
  From:  (8, 6)  {
    ([ 8, 6]  0.150000) 
  }
  From:  (8, 7)  {
    ([ 8, 7]  0.150000) 
  }
  From:  (8, 8)  {
    ([ 8, 8]  0.150000) 
  }
  From:  (8, 9)  {
    ([ 8, 9]  0.150000) 
  }
  From:  (9, 1)  {
    ([ 9, 1]  0.150000) 
  }
  From:  (9, 2)  {
    ([ 9, 2]  0.150000) 
  }
  From:  (9, 3)  {
    ([ 9, 3]  0.150000) 
  }
  From:  (9, 4)  {
    ([ 9, 4]  0.150000) 
  }
  From:  (9, 5)  {
    ([ 9, 5]  0.150000) 
  }
  From:  (9, 6)  {
    ([ 9, 6]  0.150000) 
  }
  From:  (9, 7)  {
    ([ 9, 7]  0.150000) 
  }
  From:  (9, 8)  {
    ([ 9, 8]  0.150000) 
  }
  From:  (9, 9)  {
    ([ 9, 9]  0.150000) 
  }
}

Loading data, please wait...