Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_13
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
netgen1 *
weightslist.txt *
                            
% Tue Sep 29 05:24:59 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4h, ev1h)  {
  From:  (1, 1)  {
    ([ 1, 8]  0.000045)     ([ 1, 9]  0.001890)     ([ 1, 1]  0.000135)     |              |     ([ 1, 3]  0.000309) 
  }
  From:  (1, 2)  {
    |              |     ([ 1, 1]  0.000173)     ([ 1, 2]  0.001795)     ([ 1, 3]  0.000240)     |              | 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.000412)     |              |     |              |     |              |     ([ 1, 5]  0.000781) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.001429)     ([ 1, 3]  0.000403)     |              |     |              |     |              | 
  }
  From:  (1, 5)  {
    |              |     ([ 1, 4]  0.000648)     ([ 1, 5]  0.001665)     |              |     ([ 1, 7]  0.001703) 
  }
  From:  (1, 6)  {
    |              |     |              |     |              |     ([ 1, 7]  0.000638)     |              | 
  }
  From:  (1, 7)  {
    ([ 1, 5]  0.000487)     ([ 1, 6]  0.001050)     ([ 1, 7]  0.001225)     |              |     |              | 
  }
  From:  (1, 8)  {
    |              |     ([ 1, 7]  0.001395)     |              |     ([ 1, 9]  0.001770)     |              | 
  }
  From:  (1, 9)  {
    ([ 1, 7]  0.001377)     ([ 1, 8]  0.001642)     |              |     |              |     |              | 
  }
  From:  (2, 1)  {
    ([ 2, 8]  0.000960)     ([ 2, 9]  0.001054)     |              |     |              |     ([ 2, 3]  0.001373) 
  }
  From:  (2, 2)  {
    |              |     ([ 2, 1]  0.001831)     ([ 2, 2]  0.000967)     |              |     |              | 
  }
  From:  (2, 3)  {
    |              |     ([ 2, 2]  0.000673)     |              |     |              |     ([ 2, 5]  0.000049) 
  }
  From:  (2, 4)  {
    |              |     ([ 2, 3]  0.000959)     ([ 2, 4]  0.001439)     |              |     |              | 
  }
  From:  (2, 5)  {
    ([ 2, 3]  0.001308)     |              |     |              |     ([ 2, 6]  0.000640)     |              | 
  }
  From:  (2, 6)  {
    ([ 2, 4]  0.000423)     ([ 2, 5]  0.000597)     |              |     |              |     ([ 2, 8]  0.001762) 
  }
  From:  (2, 7)  {
    |              |     ([ 2, 6]  0.000625)     |              |     ([ 2, 8]  0.000271)     ([ 2, 9]  0.000341) 
  }
  From:  (2, 8)  {
    ([ 2, 6]  0.001157)     |              |     ([ 2, 8]  0.000191)     |              |     |              | 
  }
  From:  (2, 9)  {
    ([ 2, 7]  0.000611)     ([ 2, 8]  0.000573)     |              |     |              |     ([ 2, 2]  0.000384) 
  }
  From:  (3, 1)  {
    ([ 3, 8]  0.000855)     |              |     ([ 3, 1]  0.000301)     |              |     |              | 
  }
  From:  (3, 2)  {
    ([ 3, 9]  0.001611)     |              |     ([ 3, 2]  0.000084)     ([ 3, 3]  0.000012)     ([ 3, 4]  0.000276) 
  }
  From:  (3, 3)  {
    ([ 3, 1]  0.000626)     |              |     ([ 3, 3]  0.000817)     |              |     ([ 3, 5]  0.000241) 
  }
  From:  (3, 4)  {
    |              |     ([ 3, 3]  0.001583)     |              |     |              |     ([ 3, 6]  0.001129) 
  }
  From:  (3, 5)  {
    ([ 3, 3]  0.001584)     |              |     |              |     |              |     |              | 
  }
  From:  (3, 6)  {
    ([ 3, 4]  0.001215)     ([ 3, 5]  0.000442)     |              |     |              |     |              | 
  }
  From:  (3, 7)  {
    |              |     |              |     ([ 3, 7]  0.001446)     |              |     |              | 
  }
  From:  (3, 8)  {
    |              |     ([ 3, 7]  0.000791)     ([ 3, 8]  0.001537)     ([ 3, 9]  0.001773)     ([ 3, 1]  0.000397) 
  }
  From:  (3, 9)  {
    |              |     ([ 3, 8]  0.000698)     |              |     ([ 3, 1]  0.001262)     |              | 
  }
  From:  (4, 1)  {
    |              |     |              |     |              |     ([ 4, 2]  0.000437)     ([ 4, 3]  0.000775) 
  }
  From:  (4, 2)  {
    ([ 4, 9]  0.000422)     |              |     ([ 4, 2]  0.000502)     |              |     ([ 4, 4]  0.001736) 
  }
  From:  (4, 3)  {
    |              |     ([ 4, 2]  0.001216)     |              |     |              |     |              | 
  }
  From:  (4, 4)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.001229)   }
  From:  (4, 5)  {
    |              |     ([ 4, 4]  0.001047)     |              |     ([ 4, 6]  0.001716)     ([ 4, 7]  0.001820) 
  }
  From:  (4, 6)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.000273)   }
  From:  (4, 7)  {
    |              |     ([ 4, 6]  0.000899)     |              |     |              |     ([ 4, 9]  0.000119) 
  }
  From:  (4, 8)  {
    ([ 4, 6]  0.001894)     |              |     ([ 4, 8]  0.001373)     |              |     ([ 4, 1]  0.001293) 
  }
  From:  (4, 9)  {
    |              |     |              |     ([ 4, 9]  0.001608)     |              |     |              | 
  }
  From:  (5, 1)  {
    ([ 5, 8]  0.001736)     ([ 5, 9]  0.001127)     ([ 5, 1]  0.001272)     |              |     ([ 5, 3]  0.000719) 
  }
  From:  (5, 2)  {
    |              |     |              |     |              |     |              |     ([ 5, 4]  0.000106) 
  }
  From:  (5, 3)  {
    |              |     |              |     ([ 5, 3]  0.000429)     |              |     |              | 
  }
  From:  (5, 4)  {
    |              |     ([ 5, 3]  0.001969)     ([ 5, 4]  0.000270)     ([ 5, 5]  0.001024)     |              | 
  }
  From:  (5, 5)  {
    |              |     ([ 5, 4]  0.001650)     |              |     ([ 5, 6]  0.000480)     ([ 5, 7]  0.000598) 
  }
  From:  (5, 6)  {
    |              |     ([ 5, 5]  0.000830)     ([ 5, 6]  0.001580)     |              |     |              | 
  }
  From:  (5, 7)  {
    ([ 5, 5]  0.001608)     |              |     |              |     |              |     |              | 
  }
  From:  (5, 8)  {
    ([ 5, 6]  0.001371)     ([ 5, 7]  0.001095)     |              |     ([ 5, 9]  0.000193)     ([ 5, 1]  0.000865) 
  }
  From:  (5, 9)  {
    |              |     ([ 5, 8]  0.000121)     ([ 5, 9]  0.001622)     |              |     ([ 5, 2]  0.000042) 
  }
  From:  (6, 1)  {
    |              |     |              |     |              |     ([ 6, 2]  0.001962)     |              | 
  }
  From:  (6, 2)  {
    ([ 6, 9]  0.000715)     |              |     ([ 6, 2]  0.001684)     ([ 6, 3]  0.001405)     |              | 
  }
  From:  (6, 3)  {
    |              |     |              |     |              |     ([ 6, 4]  0.001785)     ([ 6, 5]  0.000139) 
  }
  From:  (6, 4)  {
    |              |     ([ 6, 3]  0.000960)     ([ 6, 4]  0.000814)     |              |     ([ 6, 6]  0.001841) 
  }
  From:  (6, 5)  {
    |              |     |              |     |              |     |              |     ([ 6, 7]  0.001320) 
  }
  From:  (6, 6)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.001329)   }
  From:  (6, 7)  {
    ([ 6, 5]  0.000696)     |              |     ([ 6, 7]  0.000871)     |              |     ([ 6, 9]  0.000568) 
  }
  From:  (6, 8)  {
    |              |     ([ 6, 7]  0.001823)     |              |     |              |     ([ 6, 1]  0.001082) 
  }
  From:  (6, 9)  {
    |              |     ([ 6, 8]  0.000320)     ([ 6, 9]  0.001858)     ([ 6, 1]  0.001400)     |              | 
  }
  From:  (7, 1)  {
    |              |     |              |     ([ 7, 1]  0.001651)     |              |     |              | 
  }
  From:  (7, 2)  {
    ([ 7, 9]  0.000522)     |              |     ([ 7, 2]  0.001441)     |              |     ([ 7, 4]  0.001293) 
  }
  From:  (7, 3)  {
    ([ 7, 1]  0.001844)     |              |     ([ 7, 3]  0.001677)     ([ 7, 4]  0.000025)     ([ 7, 5]  0.001519) 
  }
  From:  (7, 4)  {
    |              |     |              |     ([ 7, 4]  0.000320)     ([ 7, 5]  0.000861)     ([ 7, 6]  0.000380) 
  }
  From:  (7, 5)  {
    ([ 7, 3]  0.000055)     ([ 7, 4]  0.000299)     ([ 7, 5]  0.000825)     ([ 7, 6]  0.001421)     |              | 
  }
  From:  (7, 6)  {
    |              |     ([ 7, 5]  0.000770)     |              |     |              |     ([ 7, 8]  0.000258) 
  }
  From:  (7, 7)  {
    |              |     ([ 7, 6]  0.000143)     ([ 7, 7]  0.000601)     ([ 7, 8]  0.000610)     ([ 7, 9]  0.000203) 
  }
  From:  (7, 8)  {
    ([ 7, 6]  0.000402)     ([ 7, 7]  0.001025)     ([ 7, 8]  0.000773)     |              |     |              | 
  }
  From:  (7, 9)  {
    ([ 7, 7]  0.001326)     ([ 7, 8]  0.000525)     |              |     |              |     |              | 
  }
  From:  (8, 1)  {
    |              |     ([ 8, 9]  0.001642)     |              |     |              |     |              | 
  }
  From:  (8, 2)  {
    ([ 8, 9]  0.001851)     ([ 8, 1]  0.000083)     ([ 8, 2]  0.000932)     ([ 8, 3]  0.000896)     |              | 
  }
  From:  (8, 3)  {
    ([ 8, 1]  0.001013)     |              |     ([ 8, 3]  0.001029)     |              |     ([ 8, 5]  0.000515) 
  }
  From:  (8, 4)  {
    |              |     |              |     |              |     ([ 8, 5]  0.000385)     |              | 
  }
  From:  (8, 5)  {
    ([ 8, 3]  0.001635)     ([ 8, 4]  0.000493)     |              |     ([ 8, 6]  0.001901)     ([ 8, 7]  0.001550) 
  }
  From:  (8, 6)  {
    |              |     |              |     ([ 8, 6]  0.000534)     ([ 8, 7]  0.000766)     |              | 
  }
  From:  (8, 7)  {
    ([ 8, 5]  0.001949)     ([ 8, 6]  0.001517)     ([ 8, 7]  0.000291)     ([ 8, 8]  0.000453)     |              | 
  }
  From:  (8, 8)  {
    |              |     |              |     |              |     ([ 8, 9]  0.001591)     ([ 8, 1]  0.001617) 
  }
  From:  (8, 9)  {
    ([ 8, 7]  0.000452)     ([ 8, 8]  0.001554)     ([ 8, 9]  0.001128)     |              |     |              | 
  }
  From:  (9, 1)  {
    ([ 9, 8]  0.000143)     |              |     ([ 9, 1]  0.001639)     |              |     ([ 9, 3]  0.000604) 
  }
  From:  (9, 2)  {
    ([ 9, 9]  0.001672)     ([ 9, 1]  0.000333)     |              |     |              |     ([ 9, 4]  0.000143) 
  }
  From:  (9, 3)  {
    ([ 9, 1]  0.001957)     |              |     |              |     ([ 9, 4]  0.000597)     ([ 9, 5]  0.001810) 
  }
  From:  (9, 4)  {
    |              |     ([ 9, 3]  0.000705)     |              |     |              |     |              | 
  }
  From:  (9, 5)  {
    ([ 9, 3]  0.000190)     |              |     ([ 9, 5]  0.001355)     ([ 9, 6]  0.001502)     |              | 
  }
  From:  (9, 6)  {
    ([ 9, 4]  0.000037)     |              |     |              |     |              |     ([ 9, 8]  0.000962) 
  }
  From:  (9, 7)  {
    ([ 9, 5]  0.000592)     ([ 9, 6]  0.001927)     |              |     ([ 9, 8]  0.000819)     |              | 
  }
  From:  (9, 8)  {
    |              |     ([ 9, 7]  0.000320)     ([ 9, 8]  0.001593)     |              |     |              | 
  }
  From:  (9, 9)  {
    |              |     |              |     ([ 9, 9]  0.001655)     ([ 9, 1]  0.001525)     ([ 9, 2]  0.000657) 
  }
}

Loading data, please wait...