Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_17
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 13:28:07 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1h, ev4h)  {
  From:  (1, 1)  {
    |              |     |              |     |              |     |              |     ([ 1, 3]  0.036543) 
  }
  From:  (1, 2)  {
    ([ 1, 9]  0.038079)     ([ 1, 1]  0.035905)     ([ 1, 2]  0.040817)     ([ 1, 3]  0.030694)     ([ 1, 4]  0.031008) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.045899)     ([ 1, 2]  0.039383)     ([ 1, 3]  0.045935)     |              |     ([ 1, 5]  0.044635) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.034991)     ([ 1, 3]  0.039431)     ([ 1, 4]  0.047755)     |              |     |              | 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.033281)     ([ 1, 4]  0.040203)     |              |     ([ 1, 6]  0.034385)     ([ 1, 7]  0.037990) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.037567)     ([ 1, 5]  0.042228)     |              |     ([ 1, 7]  0.046957)     |              | 
  }
  From:  (1, 7)  {
    |              |     |              |     |              |     |              |     ([ 1, 9]  0.046653) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.033218)     |              |     ([ 1, 8]  0.030215)     |              |     ([ 1, 1]  0.034784) 
  }
  From:  (1, 9)  {
    |              |     |              |     |              |     ([ 1, 1]  0.044115)     ([ 1, 2]  0.046886) 
  }
  From:  (2, 1)  {
    |              |     ([ 2, 9]  0.035353)     ([ 2, 1]  0.032102)     |              |     ([ 2, 3]  0.046579) 
  }
  From:  (2, 2)  {
    ([ 2, 9]  0.048017)     |              |     |              |     |              |     ([ 2, 4]  0.032352) 
  }
  From:  (2, 3)  {
    ([ 2, 1]  0.034206)     |              |     |              |     |              |     |              | 
  }
  From:  (2, 4)  {
    |              |     ([ 2, 3]  0.045172)     |              |     |              |     ([ 2, 6]  0.044671) 
  }
  From:  (2, 5)  {
    ([ 2, 3]  0.031836)     ([ 2, 4]  0.032458)     |              |     |              |     ([ 2, 7]  0.048756) 
  }
  From:  (2, 6)  {
    ([ 2, 4]  0.035220)     |              |     |              |     |              |     ([ 2, 8]  0.041822) 
  }
  From:  (2, 7)  {
    |              |     |              |     |              |     |              |     ([ 2, 9]  0.034500) 
  }
  From:  (2, 8)  {
    |              |     |              |     |              |     ([ 2, 9]  0.035667)     ([ 2, 1]  0.044915) 
  }
  From:  (2, 9)  {
    |              |     ([ 2, 8]  0.031925)     |              |     |              |     ([ 2, 2]  0.045225) 
  }
  From:  (3, 1)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.030733)   }
  From:  (3, 2)  {
    ([ 3, 9]  0.044030)     ([ 3, 1]  0.039483)     |              |     |              |     ([ 3, 4]  0.040805) 
  }
  From:  (3, 3)  {
    ([ 3, 1]  0.044974)     |              |     ([ 3, 3]  0.033584)     |              |     ([ 3, 5]  0.036128) 
  }
  From:  (3, 4)  {
    |              |     ([ 3, 3]  0.036932)     |              |     |              |     ([ 3, 6]  0.039691) 
  }
  From:  (3, 5)  {
    |              |     ([ 3, 4]  0.032338)     ([ 3, 5]  0.034004)     ([ 3, 6]  0.032162)     ([ 3, 7]  0.040272) 
  }
  From:  (3, 6)  {
    ([ 3, 4]  0.036280)     ([ 3, 5]  0.042446)     ([ 3, 6]  0.045153)     ([ 3, 7]  0.032032)     ([ 3, 8]  0.031705) 
  }
  From:  (3, 7)  {
    ([ 3, 5]  0.040674)     |              |     |              |     ([ 3, 8]  0.036036)     |              | 
  }
  From:  (3, 8)  {
    |              |     |              |     ([ 3, 8]  0.037344)     ([ 3, 9]  0.037223)     ([ 3, 1]  0.038546) 
  }
  From:  (3, 9)  {
    ([ 3, 7]  0.034978)     ([ 3, 8]  0.045256)     |              |     ([ 3, 1]  0.048330)     |              | 
  }
  From:  (4, 1)  {
    |              |     ([ 4, 9]  0.041746)     ([ 4, 1]  0.046702)     ([ 4, 2]  0.033998)     |              | 
  }
  From:  (4, 2)  {
    ([ 4, 9]  0.037835)     ([ 4, 1]  0.031352)     |              |     ([ 4, 3]  0.041320)     |              | 
  }
  From:  (4, 3)  {
    ([ 4, 1]  0.042596)     |              |     ([ 4, 3]  0.033426)     ([ 4, 4]  0.040665)     |              | 
  }
  From:  (4, 4)  {
    ([ 4, 2]  0.036736)     ([ 4, 3]  0.040518)     ([ 4, 4]  0.046717)     ([ 4, 5]  0.043155)     |              | 
  }
  From:  (4, 5)  {
    |              |     |              |     |              |     |              |     ([ 4, 7]  0.031453) 
  }
  From:  (4, 6)  {
    ([ 4, 4]  0.038792)     ([ 4, 5]  0.036115)     |              |     ([ 4, 7]  0.046521)     |              | 
  }
  From:  (4, 7)  {
    |              |     ([ 4, 6]  0.033081)     ([ 4, 7]  0.031079)     |              |     |              | 
  }
  From:  (4, 8)  {
    |              |     ([ 4, 7]  0.031229)     |              |     |              |     ([ 4, 1]  0.045115) 
  }
  From:  (4, 9)  {
    ([ 4, 7]  0.045386)     |              |     |              |     ([ 4, 1]  0.048205)     ([ 4, 2]  0.034847) 
  }
  From:  (5, 1)  {
    ([ 5, 8]  0.043944)     ([ 5, 9]  0.048832)     |              |     ([ 5, 2]  0.049104)     ([ 5, 3]  0.036474) 
  }
  From:  (5, 2)  {
    |              |     |              |     |              |     ([ 5, 3]  0.048551)     ([ 5, 4]  0.041502) 
  }
  From:  (5, 3)  {
    |              |     ([ 5, 2]  0.035163)     ([ 5, 3]  0.033988)     |              |     |              | 
  }
  From:  (5, 4)  {
    ([ 5, 2]  0.031577)     |              |     ([ 5, 4]  0.047431)     ([ 5, 5]  0.033311)     |              | 
  }
  From:  (5, 5)  {
    |              |     |              |     ([ 5, 5]  0.033780)     ([ 5, 6]  0.033566)     |              | 
  }
  From:  (5, 6)  {
    ([ 5, 4]  0.048357)     ([ 5, 5]  0.033966)     |              |     |              |     |              | 
  }
  From:  (5, 7)  {
    ([ 5, 5]  0.032211)     |              |     ([ 5, 7]  0.037126)     |              |     |              | 
  }
  From:  (5, 8)  {
    ([ 5, 6]  0.031063)     |              |     |              |     ([ 5, 9]  0.033789)     ([ 5, 1]  0.037658) 
  }
  From:  (5, 9)  {
    ([ 5, 7]  0.043321)     ([ 5, 8]  0.046640)     ([ 5, 9]  0.045396)     ([ 5, 1]  0.034174)     |              | 
  }
  From:  (6, 1)  {
    ([ 6, 8]  0.032818)     ([ 6, 9]  0.042298)     ([ 6, 1]  0.038269)     |              |     ([ 6, 3]  0.044932) 
  }
  From:  (6, 2)  {
    ([ 6, 9]  0.031282)     ([ 6, 1]  0.046709)     |              |     ([ 6, 3]  0.043067)     ([ 6, 4]  0.040197) 
  }
  From:  (6, 3)  {
    |              |     |              |     ([ 6, 3]  0.031986)     ([ 6, 4]  0.035121)     |              | 
  }
  From:  (6, 4)  {
    ([ 6, 2]  0.044707)     |              |     ([ 6, 4]  0.045949)     ([ 6, 5]  0.048921)     |              | 
  }
  From:  (6, 5)  {
    ([ 6, 3]  0.042246)     |              |     |              |     ([ 6, 6]  0.031626)     ([ 6, 7]  0.041921) 
  }
  From:  (6, 6)  {
    ([ 6, 4]  0.030492)     ([ 6, 5]  0.049231)     ([ 6, 6]  0.031814)     ([ 6, 7]  0.045782)     |              | 
  }
  From:  (6, 7)  {
    |              |     ([ 6, 6]  0.044339)     |              |     ([ 6, 8]  0.048747)     |              | 
  }
  From:  (6, 8)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.049281)   }
  From:  (6, 9)  {
    |              |     |              |     ([ 6, 9]  0.042225)     ([ 6, 1]  0.035015)     |              | 
  }
  From:  (7, 1)  {
    |              |     ([ 7, 9]  0.030501)     |              |     ([ 7, 2]  0.046270)     |              | 
  }
  From:  (7, 2)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.039894)   }
  From:  (7, 3)  {
    |              |     ([ 7, 2]  0.038975)     |              |     |              |     |              | 
  }
  From:  (7, 4)  {
    ([ 7, 2]  0.030327)     ([ 7, 3]  0.049047)     |              |     ([ 7, 5]  0.031603)     ([ 7, 6]  0.038741) 
  }
  From:  (7, 5)  {
    |              |     ([ 7, 4]  0.032949)     |              |     |              |     |              | 
  }
  From:  (7, 6)  {
    |              |     |              |     ([ 7, 6]  0.044478)     ([ 7, 7]  0.041155)     ([ 7, 8]  0.033897) 
  }
  From:  (7, 7)  {
    |              |     ([ 7, 6]  0.033921)     ([ 7, 7]  0.039267)     ([ 7, 8]  0.049193)     ([ 7, 9]  0.038482) 
  }
  From:  (7, 8)  {
    |              |     ([ 7, 7]  0.035415)     |              |     ([ 7, 9]  0.033600)     ([ 7, 1]  0.034629) 
  }
  From:  (7, 9)  {
    |              |     |              |     ([ 7, 9]  0.034729)     ([ 7, 1]  0.030241)     ([ 7, 2]  0.033484) 
  }
  From:  (8, 1)  {
    ([ 8, 8]  0.041892)     |              |     |              |     ([ 8, 2]  0.047649)     |              | 
  }
  From:  (8, 2)  {
    |              |     |              |     |              |     ([ 8, 3]  0.038086)     |              | 
  }
  From:  (8, 3)  {
    |              |     ([ 8, 2]  0.030539)     ([ 8, 3]  0.043877)     ([ 8, 4]  0.039569)     ([ 8, 5]  0.048189) 
  }
  From:  (8, 4)  {
    ([ 8, 2]  0.036601)     |              |     |              |     |              |     ([ 8, 6]  0.038969) 
  }
  From:  (8, 5)  {
    ([ 8, 3]  0.044812)     ([ 8, 4]  0.038259)     ([ 8, 5]  0.030728)     |              |     |              | 
  }
  From:  (8, 6)  {
    ([ 8, 4]  0.034461)     ([ 8, 5]  0.040141)     ([ 8, 6]  0.045701)     ([ 8, 7]  0.031860)     ([ 8, 8]  0.033009) 
  }
  From:  (8, 7)  {
    |              |     |              |     |              |     ([ 8, 8]  0.042940)     ([ 8, 9]  0.044852) 
  }
  From:  (8, 8)  {
    ([ 8, 6]  0.038274)     |              |     |              |     |              |     |              | 
  }
  From:  (8, 9)  {
    ([ 8, 7]  0.030544)     ([ 8, 8]  0.047173)     ([ 8, 9]  0.031490)     |              |     ([ 8, 2]  0.032456) 
  }
  From:  (9, 1)  {
    ([ 9, 8]  0.048704)     ([ 9, 9]  0.047265)     |              |     ([ 9, 2]  0.044841)     |              | 
  }
  From:  (9, 2)  {
    |              |     |              |     |              |     ([ 9, 3]  0.035353)     |              | 
  }
  From:  (9, 3)  {
    ([ 9, 1]  0.031969)     |              |     ([ 9, 3]  0.043137)     ([ 9, 4]  0.040261)     ([ 9, 5]  0.032854) 
  }
  From:  (9, 4)  {
    |              |     ([ 9, 3]  0.041214)     |              |     |              |     |              | 
  }
  From:  (9, 5)  {
    |              |     ([ 9, 4]  0.042838)     ([ 9, 5]  0.044548)     ([ 9, 6]  0.043410)     ([ 9, 7]  0.045355) 
  }
  From:  (9, 6)  {
    |              |     |              |     |              |     ([ 9, 7]  0.032049)     ([ 9, 8]  0.031892) 
  }
  From:  (9, 7)  {
    ([ 9, 5]  0.040454)     |              |     |              |     |              |     |              | 
  }
  From:  (9, 8)  {
    |              |     ([ 9, 7]  0.043554)     |              |     |              |     |              | 
  }
  From:  (9, 9)  {
    |              |     |              |     ([ 9, 9]  0.042556)     ([ 9, 1]  0.049338)     ([ 9, 2]  0.035069) 
  }
}

Loading data, please wait...