Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_17
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 13:28:07 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (1, 5)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4h, ev1h)  {
  From:  (1, 1)  {
    |              |     |              |     |              |     |              |     ([ 1, 3]  0.000654) 
  }
  From:  (1, 2)  {
    ([ 1, 9]  0.000808)     ([ 1, 1]  0.000591)     ([ 1, 2]  0.001082)     ([ 1, 3]  0.000069)     ([ 1, 4]  0.000101) 
  }
  From:  (1, 3)  {
    ([ 1, 1]  0.001590)     ([ 1, 2]  0.000938)     ([ 1, 3]  0.001593)     |              |     ([ 1, 5]  0.001464) 
  }
  From:  (1, 4)  {
    ([ 1, 2]  0.000499)     ([ 1, 3]  0.000943)     ([ 1, 4]  0.001776)     |              |     |              | 
  }
  From:  (1, 5)  {
    ([ 1, 3]  0.000328)     ([ 1, 4]  0.001020)     |              |     ([ 1, 6]  0.000438)     ([ 1, 7]  0.000799) 
  }
  From:  (1, 6)  {
    ([ 1, 4]  0.000757)     ([ 1, 5]  0.001223)     |              |     ([ 1, 7]  0.001696)     |              | 
  }
  From:  (1, 7)  {
    |              |     |              |     |              |     |              |     ([ 1, 9]  0.001665) 
  }
  From:  (1, 8)  {
    ([ 1, 6]  0.000322)     |              |     ([ 1, 8]  0.000021)     |              |     ([ 1, 1]  0.000478) 
  }
  From:  (1, 9)  {
    |              |     |              |     |              |     ([ 1, 1]  0.001412)     ([ 1, 2]  0.001689) 
  }
  From:  (2, 1)  {
    |              |     ([ 2, 9]  0.000535)     ([ 2, 1]  0.000210)     |              |     ([ 2, 3]  0.001658) 
  }
  From:  (2, 2)  {
    ([ 2, 9]  0.001802)     |              |     |              |     |              |     ([ 2, 4]  0.000235) 
  }
  From:  (2, 3)  {
    ([ 2, 1]  0.000421)     |              |     |              |     |              |     |              | 
  }
  From:  (2, 4)  {
    |              |     ([ 2, 3]  0.001517)     |              |     |              |     ([ 2, 6]  0.001467) 
  }
  From:  (2, 5)  {
    ([ 2, 3]  0.000184)     ([ 2, 4]  0.000246)     |              |     |              |     ([ 2, 7]  0.001876) 
  }
  From:  (2, 6)  {
    ([ 2, 4]  0.000522)     |              |     |              |     |              |     ([ 2, 8]  0.001182) 
  }
  From:  (2, 7)  {
    |              |     |              |     |              |     |              |     ([ 2, 9]  0.000450) 
  }
  From:  (2, 8)  {
    |              |     |              |     |              |     ([ 2, 9]  0.000567)     ([ 2, 1]  0.001491) 
  }
  From:  (2, 9)  {
    |              |     ([ 2, 8]  0.000192)     |              |     |              |     ([ 2, 2]  0.001522) 
  }
  From:  (3, 1)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.000073)   }
  From:  (3, 2)  {
    ([ 3, 9]  0.001403)     ([ 3, 1]  0.000948)     |              |     |              |     ([ 3, 4]  0.001080) 
  }
  From:  (3, 3)  {
    ([ 3, 1]  0.001497)     |              |     ([ 3, 3]  0.000358)     |              |     ([ 3, 5]  0.000613) 
  }
  From:  (3, 4)  {
    |              |     ([ 3, 3]  0.000693)     |              |     |              |     ([ 3, 6]  0.000969) 
  }
  From:  (3, 5)  {
    |              |     ([ 3, 4]  0.000234)     ([ 3, 5]  0.000400)     ([ 3, 6]  0.000216)     ([ 3, 7]  0.001027) 
  }
  From:  (3, 6)  {
    ([ 3, 4]  0.000628)     ([ 3, 5]  0.001245)     ([ 3, 6]  0.001515)     ([ 3, 7]  0.000203)     ([ 3, 8]  0.000171) 
  }
  From:  (3, 7)  {
    ([ 3, 5]  0.001067)     |              |     |              |     ([ 3, 8]  0.000604)     |              | 
  }
  From:  (3, 8)  {
    |              |     |              |     ([ 3, 8]  0.000734)     ([ 3, 9]  0.000722)     ([ 3, 1]  0.000855) 
  }
  From:  (3, 9)  {
    ([ 3, 7]  0.000498)     ([ 3, 8]  0.001526)     |              |     ([ 3, 1]  0.001833)     |              | 
  }
  From:  (4, 1)  {
    |              |     ([ 4, 9]  0.001175)     ([ 4, 1]  0.001670)     ([ 4, 2]  0.000400)     |              | 
  }
  From:  (4, 2)  {
    ([ 4, 9]  0.000783)     ([ 4, 1]  0.000135)     |              |     ([ 4, 3]  0.001132)     |              | 
  }
  From:  (4, 3)  {
    ([ 4, 1]  0.001260)     |              |     ([ 4, 3]  0.000343)     ([ 4, 4]  0.001066)     |              | 
  }
  From:  (4, 4)  {
    ([ 4, 2]  0.000674)     ([ 4, 3]  0.001052)     ([ 4, 4]  0.001672)     ([ 4, 5]  0.001315)     |              | 
  }
  From:  (4, 5)  {
    |              |     |              |     |              |     |              |     ([ 4, 7]  0.000145) 
  }
  From:  (4, 6)  {
    ([ 4, 4]  0.000879)     ([ 4, 5]  0.000611)     |              |     ([ 4, 7]  0.001652)     |              | 
  }
  From:  (4, 7)  {
    |              |     ([ 4, 6]  0.000308)     ([ 4, 7]  0.000108)     |              |     |              | 
  }
  From:  (4, 8)  {
    |              |     ([ 4, 7]  0.000123)     |              |     |              |     ([ 4, 1]  0.001512) 
  }
  From:  (4, 9)  {
    ([ 4, 7]  0.001539)     |              |     |              |     ([ 4, 1]  0.001821)     ([ 4, 2]  0.000485) 
  }
  From:  (5, 1)  {
    ([ 5, 8]  0.001394)     ([ 5, 9]  0.001883)     |              |     ([ 5, 2]  0.001910)     ([ 5, 3]  0.000647) 
  }
  From:  (5, 2)  {
    |              |     |              |     |              |     ([ 5, 3]  0.001855)     ([ 5, 4]  0.001150) 
  }
  From:  (5, 3)  {
    |              |     ([ 5, 2]  0.000516)     ([ 5, 3]  0.000399)     |              |     |              | 
  }
  From:  (5, 4)  {
    ([ 5, 2]  0.000158)     |              |     ([ 5, 4]  0.001743)     ([ 5, 5]  0.000331)     |              | 
  }
  From:  (5, 5)  {
    |              |     |              |     ([ 5, 5]  0.000378)     ([ 5, 6]  0.000357)     |              | 
  }
  From:  (5, 6)  {
    ([ 5, 4]  0.001836)     ([ 5, 5]  0.000397)     |              |     |              |     |              | 
  }
  From:  (5, 7)  {
    ([ 5, 5]  0.000221)     |              |     ([ 5, 7]  0.000713)     |              |     |              | 
  }
  From:  (5, 8)  {
    ([ 5, 6]  0.000106)     |              |     |              |     ([ 5, 9]  0.000379)     ([ 5, 1]  0.000766) 
  }
  From:  (5, 9)  {
    ([ 5, 7]  0.001332)     ([ 5, 8]  0.001664)     ([ 5, 9]  0.001540)     ([ 5, 1]  0.000417)     |              | 
  }
  From:  (6, 1)  {
    ([ 6, 8]  0.000282)     ([ 6, 9]  0.001230)     ([ 6, 1]  0.000827)     |              |     ([ 6, 3]  0.001493) 
  }
  From:  (6, 2)  {
    ([ 6, 9]  0.000128)     ([ 6, 1]  0.001671)     |              |     ([ 6, 3]  0.001307)     ([ 6, 4]  0.001020) 
  }
  From:  (6, 3)  {
    |              |     |              |     ([ 6, 3]  0.000199)     ([ 6, 4]  0.000512)     |              | 
  }
  From:  (6, 4)  {
    ([ 6, 2]  0.001471)     |              |     ([ 6, 4]  0.001595)     ([ 6, 5]  0.001892)     |              | 
  }
  From:  (6, 5)  {
    ([ 6, 3]  0.001225)     |              |     |              |     ([ 6, 6]  0.000163)     ([ 6, 7]  0.001192) 
  }
  From:  (6, 6)  {
    ([ 6, 4]  0.000049)     ([ 6, 5]  0.001923)     ([ 6, 6]  0.000181)     ([ 6, 7]  0.001578)     |              | 
  }
  From:  (6, 7)  {
    |              |     ([ 6, 6]  0.001434)     |              |     ([ 6, 8]  0.001875)     |              | 
  }
  From:  (6, 8)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.001928)   }
  From:  (6, 9)  {
    |              |     |              |     ([ 6, 9]  0.001223)     ([ 6, 1]  0.000502)     |              | 
  }
  From:  (7, 1)  {
    |              |     ([ 7, 9]  0.000050)     |              |     ([ 7, 2]  0.001627)     |              | 
  }
  From:  (7, 2)  {
    |              |     |              |     |              |     |              |     |              | 
    ([ 1, 1]  0.000989)   }
  From:  (7, 3)  {
    |              |     ([ 7, 2]  0.000898)     |              |     |              |     |              | 
  }
  From:  (7, 4)  {
    ([ 7, 2]  0.000033)     ([ 7, 3]  0.001905)     |              |     ([ 7, 5]  0.000160)     ([ 7, 6]  0.000874) 
  }
  From:  (7, 5)  {
    |              |     ([ 7, 4]  0.000295)     |              |     |              |     |              | 
  }
  From:  (7, 6)  {
    |              |     |              |     ([ 7, 6]  0.001448)     ([ 7, 7]  0.001116)     ([ 7, 8]  0.000390) 
  }
  From:  (7, 7)  {
    |              |     ([ 7, 6]  0.000392)     ([ 7, 7]  0.000927)     ([ 7, 8]  0.001919)     ([ 7, 9]  0.000848) 
  }
  From:  (7, 8)  {
    |              |     ([ 7, 7]  0.000542)     |              |     ([ 7, 9]  0.000360)     ([ 7, 1]  0.000463) 
  }
  From:  (7, 9)  {
    |              |     |              |     ([ 7, 9]  0.000473)     ([ 7, 1]  0.000024)     ([ 7, 2]  0.000348) 
  }
  From:  (8, 1)  {
    ([ 8, 8]  0.001189)     |              |     |              |     ([ 8, 2]  0.001765)     |              | 
  }
  From:  (8, 2)  {
    |              |     |              |     |              |     ([ 8, 3]  0.000809)     |              | 
  }
  From:  (8, 3)  {
    |              |     ([ 8, 2]  0.000054)     ([ 8, 3]  0.001388)     ([ 8, 4]  0.000957)     ([ 8, 5]  0.001819) 
  }
  From:  (8, 4)  {
    ([ 8, 2]  0.000660)     |              |     |              |     |              |     ([ 8, 6]  0.000897) 
  }
  From:  (8, 5)  {
    ([ 8, 3]  0.001481)     ([ 8, 4]  0.000826)     ([ 8, 5]  0.000073)     |              |     |              | 
  }
  From:  (8, 6)  {
    ([ 8, 4]  0.000446)     ([ 8, 5]  0.001014)     ([ 8, 6]  0.001570)     ([ 8, 7]  0.000186)     ([ 8, 8]  0.000301) 
  }
  From:  (8, 7)  {
    |              |     |              |     |              |     ([ 8, 8]  0.001294)     ([ 8, 9]  0.001485) 
  }
  From:  (8, 8)  {
    ([ 8, 6]  0.000827)     |              |     |              |     |              |     |              | 
  }
  From:  (8, 9)  {
    ([ 8, 7]  0.000054)     ([ 8, 8]  0.001717)     ([ 8, 9]  0.000149)     |              |     ([ 8, 2]  0.000246) 
  }
  From:  (9, 1)  {
    ([ 9, 8]  0.001870)     ([ 9, 9]  0.001727)     |              |     ([ 9, 2]  0.001484)     |              | 
  }
  From:  (9, 2)  {
    |              |     |              |     |              |     ([ 9, 3]  0.000535)     |              | 
  }
  From:  (9, 3)  {
    ([ 9, 1]  0.000197)     |              |     ([ 9, 3]  0.001314)     ([ 9, 4]  0.001026)     ([ 9, 5]  0.000285) 
  }
  From:  (9, 4)  {
    |              |     ([ 9, 3]  0.001121)     |              |     |              |     |              | 
  }
  From:  (9, 5)  {
    |              |     ([ 9, 4]  0.001284)     ([ 9, 5]  0.001455)     ([ 9, 6]  0.001341)     ([ 9, 7]  0.001536) 
  }
  From:  (9, 6)  {
    |              |     |              |     |              |     ([ 9, 7]  0.000205)     ([ 9, 8]  0.000189) 
  }
  From:  (9, 7)  {
    ([ 9, 5]  0.001045)     |              |     |              |     |              |     |              | 
  }
  From:  (9, 8)  {
    |              |     ([ 9, 7]  0.001355)     |              |     |              |     |              | 
  }
  From:  (9, 9)  {
    |              |     |              |     ([ 9, 9]  0.001256)     ([ 9, 1]  0.001934)     ([ 9, 2]  0.000507) 
  }
}

Loading data, please wait...