Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_19
attsefd2.w *
attvatts.w *
efd1efd1.w *
efd1efd2.w *
efd1exfr.w *
efd1ifd1.w *
efd1infs.w *
efd1inss.w *
efd2efd1.w *
efd2efd2.w *
efd2ev4c.w *
efd2ev4h.w *
efd2ev4v.w *
efd2exss.w *
efd2ifd2.w *
ev1hev1h.w *
ev1hev4c.w *
ev1hev4h.w *
ev1hiv1h.w *
ev1vev1v.w *
ev1vev4c.w *
ev1vev4v.w *
ev1viv1v.w *
ev4c.wt *
ev4cev4c.w *
ev4civ4c.w *
ev4h.wt *
ev4hev1h.w *
ev4hev4h.w *
ev4hiv4h.w *
ev4v.wt *
ev4vev1v.w *
ev4vev4v.w *
ev4viv4v.w *
exfrexfr.w *
exfrifd1.w *
exfrifd2.w *
exfrinfr.w *
exfsefd2.w *
exfsexfr.w *
exfsexfs.w *
exfsifd1.w *
exfsinfs.w *
exssev4c.w *
exssev4h.w *
exssev4v.w *
exssexfs.w *
exssexss.w *
exssinss.w *
ifd1efd1.w *
ifd2efd2.w *
infrexfr.w *
infsexfs.w *
inssexss.w *
iv1hev1h.w *
iv1vev1v.w *
iv4cev4c.w *
iv4hev4h.w *
iv4vev4v.w *
lgnsev1h.w *
lgnsev1v.w *
weightslist.txt *
                            
% Sun Sep 27 08:14:52 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4v, ev1v)  {
  From:  (1, 1)  {
    |              | 
    ([ 9, 1]  0.000807) 
    |              | 
    ([ 2, 1]  0.000430) 
    ([ 3, 1]  0.000315) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.000489) 
    |              | 
    ([ 1, 2]  0.000421) 
    ([ 2, 2]  0.000775) 
    ([ 3, 2]  0.001862) 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.001931) 
    |              | 
    ([ 1, 3]  0.001035) 
    ([ 2, 3]  0.000794) 
    ([ 3, 3]  0.000312) 
  }
  From:  (1, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 3, 4]  0.000046) 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.001425) 
    ([ 9, 5]  0.001061) 
    ([ 1, 5]  0.000425) 
    ([ 2, 5]  0.001849) 
    ([ 3, 5]  0.001161) 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.001852)   }
  From:  (1, 7)  {
    |              | 
    ([ 9, 7]  0.001224) 
    ([ 1, 7]  0.000030) 
    ([ 2, 7]  0.000086) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.001419) 
    |              | 
    ([ 1, 8]  0.000677) 
    |              | 
    |              | 
  }
  From:  (1, 9)  {
    |              | 
    ([ 9, 9]  0.001781) 
    ([ 1, 9]  0.000332) 
    ([ 2, 9]  0.001460) 
    ([ 3, 9]  0.000731) 
  }
  From:  (2, 1)  {
    ([ 9, 1]  0.000314) 
    ([ 1, 1]  0.000979) 
    |              | 
    |              | 
    ([ 4, 1]  0.001536) 
  }
  From:  (2, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 2]  0.000877) 
    |              | 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.001595) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000211)   }
  From:  (2, 5)  {
    ([ 9, 5]  0.000709) 
    |              | 
    ([ 2, 5]  0.001207) 
    |              | 
    ([ 4, 5]  0.000927) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.001202) 
    |              | 
    |              | 
    ([ 3, 6]  0.001271) 
    ([ 4, 6]  0.001935) 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.001986) 
    |              | 
    ([ 2, 7]  0.001388) 
    |              | 
    ([ 4, 7]  0.001655) 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.001292) 
    |              | 
    ([ 2, 8]  0.000494) 
    ([ 3, 8]  0.001247) 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    |              | 
    ([ 2, 9]  0.000601) 
    ([ 3, 9]  0.000221) 
    ([ 4, 9]  0.001869) 
  }
  From:  (3, 1)  {
    |              | 
    ([ 2, 1]  0.000323) 
    |              | 
    |              | 
    ([ 5, 1]  0.000037) 
  }
  From:  (3, 2)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000545)   }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.000481) 
    |              | 
    ([ 4, 3]  0.001964) 
    ([ 5, 3]  0.000040) 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000441)   }
  From:  (3, 5)  {
    ([ 1, 5]  0.001931) 
    ([ 2, 5]  0.001496) 
    |              | 
    |              | 
    ([ 5, 5]  0.001581) 
  }
  From:  (3, 6)  {
    |              | 
    ([ 2, 6]  0.000962) 
    |              | 
    ([ 4, 6]  0.000658) 
    |              | 
  }
  From:  (3, 7)  {
    ([ 1, 7]  0.001969) 
    ([ 2, 7]  0.000668) 
    |              | 
    |              | 
    ([ 5, 7]  0.001628) 
  }
  From:  (3, 8)  {
    ([ 1, 8]  0.000079) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 9)  {
    |              | 
    ([ 2, 9]  0.001078) 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 1]  0.000159) 
    ([ 6, 1]  0.000343) 
  }
  From:  (4, 2)  {
    ([ 2, 2]  0.000858) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 3)  {
    ([ 2, 3]  0.000067) 
    ([ 3, 3]  0.000049) 
    ([ 4, 3]  0.001200) 
    ([ 5, 3]  0.001700) 
    |              | 
  }
  From:  (4, 4)  {
    |              | 
    ([ 3, 4]  0.000803) 
    |              | 
    |              | 
    ([ 6, 4]  0.000982) 
  }
  From:  (4, 5)  {
    ([ 2, 5]  0.001570) 
    ([ 3, 5]  0.001930) 
    ([ 4, 5]  0.001941) 
    ([ 5, 5]  0.001074) 
    ([ 6, 5]  0.000919) 
  }
  From:  (4, 6)  {
    |              | 
    ([ 3, 6]  0.000910) 
    ([ 4, 6]  0.000053) 
    |              | 
    |              | 
  }
  From:  (4, 7)  {
    |              | 
    |              | 
    ([ 4, 7]  0.001096) 
    ([ 5, 7]  0.001530) 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.001499) 
    ([ 3, 8]  0.000981) 
    ([ 4, 8]  0.000568) 
    |              | 
    |              | 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.000008) 
    ([ 3, 9]  0.001939) 
    |              | 
    ([ 5, 9]  0.001366) 
    |              | 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.000178) 
    ([ 4, 1]  0.001601) 
    ([ 5, 1]  0.001934) 
    |              | 
    |              | 
  }
  From:  (5, 2)  {
    |              | 
    ([ 4, 2]  0.001627) 
    ([ 5, 2]  0.001649) 
    ([ 6, 2]  0.001760) 
    |              | 
  }
  From:  (5, 3)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 3]  0.001157) 
    |              | 
  }
  From:  (5, 4)  {
    ([ 3, 4]  0.000434) 
    |              | 
    ([ 5, 4]  0.001044) 
    |              | 
    |              | 
  }
  From:  (5, 5)  {
    |              | 
    ([ 4, 5]  0.001256) 
    |              | 
    ([ 6, 5]  0.001779) 
    ([ 7, 5]  0.000933) 
  }
  From:  (5, 6)  {
    |              | 
    ([ 4, 6]  0.000058) 
    ([ 5, 6]  0.001746) 
    ([ 6, 6]  0.000814) 
    ([ 7, 6]  0.000639) 
  }
  From:  (5, 7)  {
    |              | 
    |              | 
    ([ 5, 7]  0.001474) 
    |              | 
    ([ 7, 7]  0.001499) 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 8]  0.000598) 
    ([ 7, 8]  0.000393) 
  }
  From:  (5, 9)  {
    ([ 3, 9]  0.001831) 
    ([ 4, 9]  0.000843) 
    |              | 
    ([ 6, 9]  0.000527) 
    |              | 
  }
  From:  (6, 1)  {
    |              | 
    |              | 
    ([ 6, 1]  0.001651) 
    ([ 7, 1]  0.001658) 
    ([ 8, 1]  0.001734) 
  }
  From:  (6, 2)  {
    |              | 
    ([ 5, 2]  0.000738) 
    ([ 6, 2]  0.000644) 
    |              | 
    ([ 8, 2]  0.001745) 
  }
  From:  (6, 3)  {
    ([ 4, 3]  0.001979) 
    |              | 
    ([ 6, 3]  0.001163) 
    ([ 7, 3]  0.001762) 
    |              | 
  }
  From:  (6, 4)  {
    |              | 
    ([ 5, 4]  0.001914) 
    ([ 6, 4]  0.000672) 
    |              | 
    ([ 8, 4]  0.001044) 
  }
  From:  (6, 5)  {
    ([ 4, 5]  0.001792) 
    ([ 5, 5]  0.001976) 
    |              | 
    ([ 7, 5]  0.000138) 
    ([ 8, 5]  0.001228) 
  }
  From:  (6, 6)  {
    |              | 
    |              | 
    ([ 6, 6]  0.000718) 
    ([ 7, 6]  0.001964) 
    ([ 8, 6]  0.001136) 
  }
  From:  (6, 7)  {
    ([ 4, 7]  0.001671) 
    ([ 5, 7]  0.001996) 
    |              | 
    ([ 7, 7]  0.000202) 
    ([ 8, 7]  0.001566) 
  }
  From:  (6, 8)  {
    |              | 
    |              | 
    ([ 6, 8]  0.001321) 
    |              | 
    ([ 8, 8]  0.000517) 
  }
  From:  (6, 9)  {
    ([ 4, 9]  0.000919) 
    ([ 5, 9]  0.001607) 
    ([ 6, 9]  0.000110) 
    |              | 
    ([ 8, 9]  0.001482) 
  }
  From:  (7, 1)  {
    |              | 
    |              | 
    ([ 7, 1]  0.000971) 
    ([ 8, 1]  0.000144) 
    ([ 9, 1]  0.000189) 
  }
  From:  (7, 2)  {
    ([ 5, 2]  0.000434) 
    ([ 6, 2]  0.000334) 
    ([ 7, 2]  0.001524) 
    ([ 8, 2]  0.000918) 
    |              | 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.000049) 
    ([ 6, 3]  0.001535) 
    ([ 7, 3]  0.000514) 
    |              | 
    ([ 9, 3]  0.000362) 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.001281) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    |              | 
    |              | 
    ([ 7, 5]  0.001729) 
    |              | 
    |              | 
  }
  From:  (7, 6)  {
    ([ 5, 6]  0.001296) 
    ([ 6, 6]  0.000289) 
    |              | 
    ([ 8, 6]  0.000535) 
    |              | 
  }
  From:  (7, 7)  {
    ([ 5, 7]  0.001736) 
    |              | 
    |              | 
    |              | 
    ([ 9, 7]  0.001981) 
  }
  From:  (7, 8)  {
    |              | 
    |              | 
    ([ 7, 8]  0.001872) 
    ([ 8, 8]  0.001640) 
    |              | 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.001736) 
    ([ 6, 9]  0.000335) 
    |              | 
    ([ 8, 9]  0.000738) 
    |              | 
  }
  From:  (8, 1)  {
    |              | 
    ([ 7, 1]  0.001048) 
    ([ 8, 1]  0.001702) 
    |              | 
    |              | 
  }
  From:  (8, 2)  {
    |              | 
    |              | 
    ([ 8, 2]  0.001684) 
    ([ 9, 2]  0.000443) 
    |              | 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.000158) 
    ([ 7, 3]  0.000408) 
    ([ 8, 3]  0.001116) 
    ([ 9, 3]  0.001629) 
    ([ 1, 3]  0.001931) 
  }
  From:  (8, 4)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 4]  0.001753) 
    ([ 1, 4]  0.000957) 
  }
  From:  (8, 5)  {
    ([ 6, 5]  0.001941) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 6)  {
    ([ 6, 6]  0.001153) 
    ([ 7, 6]  0.001741) 
    |              | 
    |              | 
    ([ 1, 6]  0.001633) 
  }
  From:  (8, 7)  {
    ([ 6, 7]  0.001007) 
    ([ 7, 7]  0.001431) 
    |              | 
    ([ 9, 7]  0.000201) 
    ([ 1, 7]  0.000508) 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.000162) 
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.001391) 
  }
  From:  (8, 9)  {
    |              | 
    |              | 
    ([ 8, 9]  0.001057) 
    |              | 
    ([ 1, 9]  0.001693) 
  }
  From:  (9, 1)  {
    ([ 7, 1]  0.000581) 
    |              | 
    |              | 
    |              | 
    ([ 2, 1]  0.001370) 
  }
  From:  (9, 2)  {
    |              | 
    ([ 8, 2]  0.000227) 
    |              | 
    |              | 
    ([ 2, 2]  0.001512) 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.000201) 
    |              | 
    ([ 9, 3]  0.001312) 
    ([ 1, 3]  0.000489) 
    |              | 
  }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.001744) 
    ([ 9, 4]  0.001196) 
    ([ 1, 4]  0.000240) 
    |              | 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.001199) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.001862) 
    ([ 8, 6]  0.000004) 
    ([ 9, 6]  0.000623) 
    ([ 1, 6]  0.001622) 
    ([ 2, 6]  0.000745) 
  }
  From:  (9, 7)  {
    |              | 
    ([ 8, 7]  0.001791) 
    ([ 9, 7]  0.000948) 
    |              | 
    |              | 
  }
  From:  (9, 8)  {
    ([ 7, 8]  0.001722) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 9)  {
    ([ 7, 9]  0.000975) 
    |              | 
    ([ 9, 9]  0.001141) 
    |              | 
    |              | 
  }
}

Loading data, please wait...