ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206398.

Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1

 Download zip file 
Help downloading and running models
Accession:206398
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. The model cell, adapted from Hu et al. (2009), is a layer V pyramidal neuron. The cell is stimulated by fluctuating synaptic inputs and generates somatic APs and spikelets in response. The spikelets are initiated as APs at the AIS that do not activate the soma.
Reference:
1 . Michalikova M, Remme MW, Kempter R (2017) Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma. PLoS Comput Biol 13:e1005237 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Electrotonus; Action Potential Initiation; Axonal Action Potentials;
Implementer(s): Michalikova, Martina [tinka.michalikova at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t;
/
MichalikovaEtAl2016Fig1
morphology
Readme.html
ca.mod *
cad.mod *
Gfluct.mod
kca.mod *
km.mod *
kv.mod *
na.mod *
na12.mod *
na16.mod *
Gfluct_session.ses
mosinit.hoc
P_DensityMech.hoc
screenshot.png
Spikelets_Main.hoc
                            
TITLE Fluctuating conductances

COMMENT
-----------------------------------------------------------------------------

    Fluctuating conductance model for synaptic bombardment
    ======================================================

THEORY

  Synaptic bombardment is represented by a stochastic model containing
  two fluctuating conductances g_e(t) and g_i(t) descibed by:

     Isyn = g_e(t) * [V - E_e] + g_i(t) * [V - E_i]
     d g_e / dt = -(g_e - g_e0) / tau_e + sqrt(D_e) * Ft
     d g_i / dt = -(g_i - g_i0) / tau_i + sqrt(D_i) * Ft

  where E_e, E_i are the reversal potentials, g_e0, g_i0 are the average
  conductances, tau_e, tau_i are time constants, D_e, D_i are noise diffusion
  coefficients and Ft is a gaussian white noise of unit standard deviation.

  g_e and g_i are described by an Ornstein-Uhlenbeck (OU) stochastic process
  where tau_e and tau_i represent the "correlation" (if tau_e and tau_i are 
  zero, g_e and g_i are white noise).  The estimation of OU parameters can
  be made from the power spectrum:

     S(w) =  2 * D * tau^2 / (1 + w^2 * tau^2)

  and the diffusion coeffient D is estimated from the variance:

     D = 2 * sigma^2 / tau


NUMERICAL RESOLUTION

  The numerical scheme for integration of OU processes takes advantage 
  of the fact that these processes are gaussian, which led to an exact
  update rule independent of the time step dt (see Gillespie DT, Am J Phys 
  64: 225, 1996):

     x(t+dt) = x(t) * exp(-dt/tau) + A * N(0,1)

  where A = sqrt( D*tau/2 * (1-exp(-2*dt/tau)) ) and N(0,1) is a normal
  random number (avg=0, sigma=1)


IMPLEMENTATION

  This mechanism is implemented as a nonspecific current defined as a
  point process.


PARAMETERS

  The mechanism takes the following parameters:

     E_e = 0  (mV)      : reversal potential of excitatory conductance
     E_i = -75 (mV)     : reversal potential of inhibitory conductance

     g_e0 = 0.0121 (umho)   : average excitatory conductance
     g_i0 = 0.0573 (umho)   : average inhibitory conductance

     std_e = 0.0030 (umho)  : standard dev of excitatory conductance
     std_i = 0.0066 (umho)  : standard dev of inhibitory conductance

     tau_e = 2.728 (ms)     : time constant of excitatory conductance
     tau_i = 10.49 (ms)     : time constant of inhibitory conductance


Gfluct2: conductance cannot be negative


REFERENCE

  Destexhe, A., Rudolph, M., Fellous, J-M. and Sejnowski, T.J.  
  Fluctuating synaptic conductances recreate in-vivo--like activity in
  neocortical neurons. Neuroscience 107: 13-24 (2001).

  (electronic copy available at http://cns.iaf.cnrs-gif.fr)


  A. Destexhe, 1999

-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
    POINT_PROCESS Gfluct2
    RANGE g_e, g_i, E_e, E_i, g_e0, g_i0, g_e1, g_i1
    RANGE std_e, std_i, tau_e, tau_i, D_e, D_i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp) 
    (mV) = (millivolt)
    (umho) = (micromho)
}

PARAMETER {
    dt      (ms)

    E_e = 0     (mV)    : reversal potential of excitatory conductance
    E_i = -75   (mV)    : reversal potential of inhibitory conductance

    :g_e0    = 0.0121 (umho) : average excitatory conductance
    g_e0    = 0.01 (umho) : average excitatory conductance
    g_i0    = 0.0573 (umho) : average inhibitory conductance

    : std_e   = 0.0030 (umho) : standard dev of excitatory conductance
    : std_i   = 0.0066 (umho) : standard dev of inhibitory conductance
    : std_e   = 0.012 (umho) : standard dev of excitatory conductance
    : std_i   = 0.0264 (umho) : standard dev of inhibitory conductance
    std_e   = 0.014 (umho) : standard dev of excitatory conductance
    std_i   = 0.02 (umho) : standard dev of inhibitory conductance

    tau_e   = 2.728 (ms)    : time constant of excitatory conductance
    tau_i   = 10.49 (ms)    : time constant of inhibitory conductance
}

ASSIGNED {
    v   (mV)        : membrane voltage
    i   (nA)        : fluctuating current
    g_e (umho)      : total excitatory conductance
    g_i (umho)      : total inhibitory conductance
    g_e1    (umho)      : fluctuating excitatory conductance
    g_i1    (umho)      : fluctuating inhibitory conductance
    D_e (umho umho /ms) : excitatory diffusion coefficient
    D_i (umho umho /ms) : inhibitory diffusion coefficient
    exp_e
    exp_i
    amp_e   (umho)
    amp_i   (umho)
}

INITIAL {
    g_e1 = 0
    g_i1 = 0
    if(tau_e != 0) {
        D_e = 2 * std_e * std_e / tau_e
        exp_e = exp(-dt/tau_e)
        amp_e = std_e * sqrt( (1-exp(-2*dt/tau_e)) )
    }
    if(tau_i != 0) {
        D_i = 2 * std_i * std_i / tau_i
        exp_i = exp(-dt/tau_i)
        amp_i = std_i * sqrt( (1-exp(-2*dt/tau_i)) )
    }
}

BREAKPOINT {
    SOLVE oup
    if(tau_e==0) {
       g_e = std_e * normrand(0,1)
    }
    if(tau_i==0) {
       g_i = std_i * normrand(0,1)
    }
    g_e = g_e0 + g_e1
    if(g_e < 0) { g_e = 0 }
    g_i = g_i0 + g_i1
    if(g_i < 0) { g_i = 0 }
    i = g_e * (v - E_e) + g_i * (v - E_i)
}


PROCEDURE oup() {       : use Scop function normrand(mean, std_dev)
   if(tau_e!=0) {
    g_e1 =  exp_e * g_e1 + amp_e * normrand(0,1)
   }
   if(tau_i!=0) {
    g_i1 =  exp_i * g_i1 + amp_i * normrand(0,1)
   }
}


PROCEDURE new_seed(seed) {      : procedure to set the seed
    set_seed(seed)
    VERBATIM
      printf("Setting random generator with seed = %g\n", _lseed);
    ENDVERBATIM
}


Loading data, please wait...