ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/206398.

Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1

 Download zip file 
Help downloading and running models
Accession:206398
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. The model cell, adapted from Hu et al. (2009), is a layer V pyramidal neuron. The cell is stimulated by fluctuating synaptic inputs and generates somatic APs and spikelets in response. The spikelets are initiated as APs at the AIS that do not activate the soma.
Reference:
1 . Michalikova M, Remme MW, Kempter R (2017) Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma. PLoS Comput Biol 13:e1005237 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Electrotonus; Action Potential Initiation; Axonal Action Potentials;
Implementer(s): Michalikova, Martina [tinka.michalikova at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t;
/
MichalikovaEtAl2016Fig1
morphology
Readme.html
ca.mod *
cad.mod *
Gfluct.mod
kca.mod *
km.mod *
kv.mod *
na.mod *
na12.mod *
na16.mod *
Gfluct_session.ses
mosinit.hoc
P_DensityMech.hoc
screenshot.png
Spikelets_Main.hoc
                            
COMMENT

na.mod

Sodium channel, Hodgkin-Huxley style kinetics.  

Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)

qi is not well constrained by the data, since there are no points
between -80 and -55.  So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc

voltage dependencies are shifted approximately from the best
fit to give higher threshold

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX na
	USEION na READ ena WRITE ina
	RANGE m, h, gna, gbar
	GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
	RANGE minf, hinf, mtau, htau
	GLOBAL Ra, Rb, Rd, Rg
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 1000   	(pS/um2)	: 0.12 mho/cm2
	vshift = -5	(mV)		: voltage shift (affects all)
								
	tha  = -43	(mV)		: v 1/2 for act		(-42)
	qa   = 7	(mV)		: act slope		
	Ra   = 0.182	(/ms)		: open (v)		
	Rb   = 0.124	(/ms)		: close (v)		

	thi1  = -50	(mV)		: v 1/2 for inact 	
	thi2  = -75	(mV)		: v 1/2 for inact 	
	qi   = 5	(mV)	        : inact tau slope
	thinf  = -72	(mV)		: inact inf slope	
	qinf  = 6.2	(mV)		: inact inf slope
	Rg   = 0.0091	(/ms)		: inact (v)	
	Rd   = 0.024	(/ms)		: inact recov (v) 

	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	gna		(pS/um2)
	ena		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states
        gna = tadj*gbar*m*m*m*h
	ina = (1e-4) * gna * (v - ena)
} 

LOCAL mexp, hexp 

PROCEDURE states() {   :Computes state variables m, h, and n 
        trates(v+vshift)      :             at the current v and dt.
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
        VERBATIM
        //return 0;
        ENDVERBATIM
}

PROCEDURE trates(v) {  
                      
        LOCAL tinc
        TABLE minf, mexp, hinf, hexp
	DEPEND dt, celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

        tadj = q10^((celsius - temp)/10)
        tinc = -dt * tadj

        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b

	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)
	minf = a*mtau

		:"h" inactivation 

	a = trap0(vm,thi1,Rd,qi)
	b = trap0(-vm,-thi2,Rg,qi)
	htau = 1/(a+b)
	hinf = 1/(1+exp((vm-thinf)/qinf))
}


FUNCTION trap0(v,th,a,q) {
	if (fabs(v/th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	





Loading data, please wait...