ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/223891.

Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)

 Download zip file 
Help downloading and running models
Accession:223891
" ... Here, combining data from fluorescence-targeted dendritic recordings and Ca2+ imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS (Low Threshold Spike) generation is established. ..." " ... Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. ..."
References:
1 . Connelly WM, Crunelli V, Errington AC (2016) Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites. J Neurosci 36:3735-54 [PubMed]
2 . Connelly WM, Crunelli V, Errington AC (2015) The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. J Neurosci 35:15505-22 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I T low threshold; I Calcium; I h;
Gap Junctions:
Receptor(s): NMDA; AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Active Dendrites; Action Potential Initiation; Calcium dynamics;
Implementer(s): Connelly, William [connelly.bill at gmail.com];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; AMPA; NMDA; I T low threshold; I h; I Calcium; Glutamate;
proc localizepas() {
  soma { g_pas = $1 }
  forsec proximals { g_pas = $2 }
  forsec distals { g_pas = $3 }
}
proc localizehtc() {
  soma { gbar_htc2 = $1 }
  forsec proximals { gbar_htc2 = $2 }
  forsec distals { gbar_htc2 = $3 }
}

proc localizeca() {
  soma { pcabar_itGHK = $1 }
  forsec proximals { pcabar_itGHK = $2 }
  forsec distals { pcabar_itGHK = $3 }
}

objectvar g[20]			// max 20 graphs
ngraph = 0
proc addgraph() { local ii	// define subroutine to add a new graph
				// addgraph("variable", minvalue, maxvalue, [mintime, maxtime])
	ii = ngraph
	ngraph = ngraph+1
	g[ii] = new Graph()
	if ( numarg() == 3 ) {
    g[ii].size(0,tstop,$2,$3)
  }
  if ( numarg() == 5 ) {
    g[ii].size($4,$5,$2,$3)
  }
	g[ii].xaxis()
	g[ii].yaxis()
	g[ii].addvar($s1,1,0)
	g[ii].save_name("graphList[0].")
	graphList[0].append(g[ii])
}

proc totalarea() { local sum //$o1 is section list
  sum = 0
  forsec $o1 {
    for (x,0) {
      sum += area(x)
    }  
  }
  print "total surface area = ", sum, " um2"
}

objref zz
zz = new Impedance()
func rn() { local rn
  init()  // make sure all changes to g, c, ri etc. have taken effect
  soma zz.loc(0.5)  // sets origin for impedance calculations to middle of soma
  zz.compute(0)  // DC input R
  soma { rn = zz.input(0.5) }  // rn is input R at middle of the soma
  return rn
}




Loading data, please wait...