Hotspots of dendritic spine turnover facilitates new spines and NN sparsity (Frank et al 2018)

 Download zip file 
Help downloading and running models
Accession:227087
Model for the following publication: Adam C. Frank, Shan Huang, Miou Zhou, Amos Gdalyahu, George Kastellakis, Panayiota Poirazi, Tawnie K. Silva, Ximiao Wen, Joshua T. Trachtenberg, and Alcino J. Silva Hotspots of Dendritic Spine Turnover Facilitate Learning-related Clustered Spine Addition and Network Sparsity
Reference:
1 . Frank AC, Huang S, Zhou M, Gdalyahu A, Kastellakis G, Silva TK, Lu E, Wen X, Poirazi P, Trachtenberg JT, Silva AJ (2018) Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat Commun 9:422 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Connectionist Network;
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron with dendritic subunits;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program; MATLAB;
Model Concept(s): Active Dendrites; Synaptic Plasticity;
Implementer(s): Kastellakis, George [gkastel at gmail.com];
Search NeuronDB for information about:  NMDA;
/
tomodel
data
distributionPlot
exportfig
fig
figs
mtrand
README
.exrc *
an_m_to.m
an_to.m
barwitherr.m *
btagstats.m *
CImg.h *
constructs. *
constructs.cpp *
constructs.h
csvgraph.m
defaults.m
dir2.m *
gconstructs.cpp *
getspikedata.m *
getsynstate.m *
getsynstate2.m *
graphs.m *
hist_percents.m *
hist_with_errs.m *
interact.m *
kurtos.m *
lamodel
lamodel.cpp
LICENSE *
make_graphs.m *
Makefile *
matlab.mat *
mtrand.cpp *
mtrand.h *
multistats.m *
nextplot.m *
pairstrong.m *
repeated.m *
rotateXLabels.m *
run_to.sh
S2sparse.m *
savefig.m *
scratch.m *
sensitivity.m *
stats.m *
stats.py *
stderr.m *
strong2.m *
strongstrong.m *
submit_lamodel.sh *
three.m *
to.cpp
trevrolls.m *
vis.py *
weastrong.m *
wxglmodel *
wxglmodel.cpp *
wxglmodel.h *
wxmodel.cpp *
wxmodel.h *
                            
import matplotlib
import pylab
import numpy
import NeuroTools.signals as signals

def visalloc():
	for it in [60]:
		for nm in [10,19]:
			for nbranches in range(10, 60, 16):

				coss = numpy.zeros((nm, nm))
				pcos = numpy.zeros((nm, nm))

				pat = numpy.genfromtxt("./data/alloc/p_m%di%db%d.dat"%(nm, it, nbranches))

				ar = numpy.genfromtxt("./data/alloc/r_m%di%db%d.dat"%(nm, it, nbranches))
				ar = ar[:, 0:64];


				scx = []
				scy = []
				for i in range(nm):
					for j in range(i+1):
						s1 = numpy.sqrt(numpy.dot(ar[i], ar[i]))
						s2 = numpy.sqrt(numpy.dot(ar[j], ar[j]))
						coss[i][j] = numpy.dot(ar[i], ar[j]) / (s1*s2)

						s1 = numpy.sqrt(numpy.dot(pat[i], pat[i]))
						s2 = numpy.sqrt(numpy.dot(pat[j], pat[j]))
						pcos[i][j] = numpy.dot(pat[i], pat[j]) / (s1*s2)

						scx.append( pcos[i][j])
						scy.append( coss[i][j])

						

				pylab.figure()
				pylab.title(" Mems %d intvl %d branches %d" %(nm, it, nbranches));
				pylab.imshow(coss , interpolation='nearest', aspect='auto',cmap='hot')
				pylab.imshow(pcos , interpolation='nearest', aspect='auto',cmap='hot')
				pylab.colorbar();
				pylab.savefig("cos_%di%db%d.png"%(nm, it, nbranches));

				#pylab.scatter(scx, scy)
				#pylab.title("m %d i %d B%d"%(nm, it, nbranches));
				#pylab.xlabel("Input Pattern similarity ")
				#pylab.ylabel("Firing pattern similarity ")
				#pylab.savefig("bn_%di%db%d.png"%(nm, it, nbranches));
	pylab.show()

			
			




def spikestats():
	
	ff = open('./data/0/spikes.dat', 'r') 
	fdata = ff.readlines()

	lst = []
	nid=0
	for l in fdata:
		ar = numpy.fromstring(l, sep=' ')
		for a in ar:
			lst.append( (nid, a))
		nid += 1

	slist = signals.SpikeList(lst, range(0,nid))
	slist.raster_plot()

	#pylab.figure()
	#pylab.imshow(spraster , interpolation='nearest', aspect='auto',cmap='hot')


	#pp = numpy.correlate(spraster[100, :], spraster[102,:], 'full');
	#print pp;
	#pylab.plot(pp)

	pylab.show()





def printltp(): 
	lar = numpy.genfromtxt('/tmp/eltp.dat') 
	lar = lar.transpose()
	pylab.figure();
	print len(lar);

	labels = ['Induction', 'ELTP', 'Rb', 'Pb', 'Rn', 'Pn','iltp', 'W', 'T']

	for i in range(len(lar)):
		if ( i != 6):
			pylab.plot(lar[i, :], label=labels[i])


	pylab.legend()

	mmax = len(lar[0, :]) 
	tstep = 50
	th = 3600/tstep


	locs, labels = pylab.xticks( numpy.arange(0, mmax, th), numpy.arange(0, mmax/th, 1))

	#pylab.plot(lar[1, :] + lar[3, :])

	pylab.show()




spikestats()

Loading data, please wait...