ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/230326.

Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)

 Download zip file 
Help downloading and running models
Accession:230326
" ... Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. ..."
References:
1 . Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [PubMed]
2 . Zylbertal A, Yarom Y, Wagner S (2017) The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study Front. Comput. Neurosci. 11(85):1-16 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): Na/Ca exchanger; Na/K pump; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Reaction-diffusion; Synaptic Plasticity; Active Dendrites; Olfaction;
Implementer(s): Zylbertal, Asaph [asaph.zylbertal at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Sodium; Na/Ca exchanger; Na/K pump;
# -*- coding: utf-8 -*-
"""
(C) Asaph Zylbertal 01.07.17, HUJI, Jerusalem, Israel
Based on: Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011). Models of Neocortical Layer 5b Pyramidal
Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties. PLoS Comput. Biol. 7, e1002107. doi:10.1371/journal.pcbi.1002107.

Introduction of [Na+]i related mechanisms to the mitral cell model

****************

"""
import neuron
import sys
from neuron import gui
import numpy as np
import matplotlib as mpl
from numpy import mean
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation
import pickle
import copy


def over_sample_space(factor):
    for sec in neuron.h.allsec():
        sec.nseg *= factor


class pyramidal(object):
    def __init__(
            self,
            params,
            space_factor=1,
            rest_file=None,
            cv=1,
            atol=0.003,
            DNa_coeff_dend=1.0):

        neuron.load_mechanisms('./mod')
        neuron.h.xopen('loadModel4.hoc')
        neuron.h.define_shape()
        over_sample_space(space_factor)
        self.cv = neuron.h.CVode()
        self.cv.active(cv)
        self.fixna = 0
        self.DNa_coeff_dend = DNa_coeff_dend
        self.event_fun = None
        if cv:
            self.cv.atol(atol)
        self.params = params
        self.converted = False
        if rest_file is not None:
            f = open(rest_file, 'r')
            self.rest_vals = pickle.load(f)
            f.close()
            self.fih = neuron.h.FInitializeHandler(1, self.restore_states)

    def events(self, ev_fun):
        self.event_fun = ev_fun

    def run_model(self, run_time, parts=1000):

        neuron.h.finitialize()
        neuron.h.fcurrent()

        if self.cv.active() == 1:
            self.cv.re_init()

        part_len = run_time / parts
        for part in range(parts):

            neuron.run((part + 1) * part_len)
            sys.stdout.write("\r%d / %d" % (part + 1, parts))
            sys.stdout.flush()

    def convert_mechs(self, nadp=True):
        neuron.h.celsius = 35.0
        if nadp:
            self.insert_na_mech()
        self.nadp = nadp
        self.remove_ca_dynamics()
        self.insert_ca_mech()
        neuron.h.use_ghk_Ca_HVA = 1
        neuron.h.use_ghk_Ca_LVAst = 1
        self.converted = True

    def insert_na_mech(self):
        for sec in neuron.h.allsec():
            sec.insert('nadp')
            sec.TotalPump_nadp = self.params['TotalPump_nadp_dend']

        for sec in neuron.h.L5PC.axon:
            sec.TotalPump_nadp = self.params['TotalPump_nadp_axon']

        for sec in neuron.h.L5PC.soma:
            sec.TotalPump_nadp = self.params['TotalPump_nadp_soma']

        neuron.h.k1_nadp = self.params['k1_nadp']
        neuron.h.k2_nadp = self.params['k2_nadp']
        neuron.h.k3_nadp = self.params['k3_nadp']
        neuron.h.DNa_nadp = self.params['DNa']

        neuron.h.nao0_na_ion = self.params['nao']
        den = (8.314e3 * (273.15 + neuron.h.celsius)) / 9.6485e4
        neuron.h.nai0_na_ion = neuron.h.nao0_na_ion * \
            np.exp(-self.params['ena'] / den)

    def remove_ca_dynamics(self):
        mechs = neuron.h.MechanismType(0)
        mechs.select("CaDynamics_E2")

        for sec in neuron.h.allsec():
            sec.push()
            mechs.remove()

    def insert_ca_mech(self):
        neuron.h.cai0_ca_ion = self.params['pump_ca_eq']
        neuron.h.cao0_ca_ion = self.params['cao']

        for sec in neuron.h.allsec():
            sec.insert('cadp')
            sec.insert('ncx')
            sec.TotalPump_cadp = self.params['TotalPump_cadp_dend']
            sec.imax_ncx = self.params['imax_ncx_dend']
        for sec in neuron.h.L5PC.axon:
            sec.TotalPump_cadp = self.params['TotalPump_cadp_axon']
            sec.imax_ncx = self.params['imax_ncx_axon']
        for sec in neuron.h.L5PC.soma:
            sec.TotalPump_cadp = self.params['TotalPump_cadp_soma']
            sec.imax_ncx = self.params['imax_ncx_soma']

        neuron.h.TotalEndBuffer_cadp = self.params['TotalEndBuffer']
        neuron.h.k2bufend_cadp = neuron.h.k1bufend_cadp * \
            self.params['EndBufferKd']
        neuron.h.kna_ncx = self.params['kna_ncx']
        neuron.h.kca_ncx = self.params['kca_ncx']
        neuron.h.gamma_ncx = self.params['gamma_ncx']
        neuron.h.ksat_ncx = self.params['ksat_ncx']

    def save_states(self, filename, new_mechs=True):
        vals = []
        for sec in neuron.h.allsec():
            for seg in sec:
                vals = vals + [seg.v, seg.Ih.m]
                if new_mechs:
                    vals = vals + [seg.nadp.pump,
                                   seg.nadp.pumpna,
                                   seg.nadp.na,
                                   seg.cadp.pump,
                                   seg.cadp.pumpca,
                                   seg.cadp.ca,
                                   seg.cadp.CaEndBuffer,
                                   seg.cadp.EndBuffer]

                if 'dend' not in sec.name():
                    vals = vals + [seg.Ca_HVA.h, seg.Ca_HVA.m,
                                   seg.Ca_LVAst.h, seg.Ca_LVAst.m]
                    vals = vals + [seg.Im.m, seg.SK_E2.z, seg.SKv3_1.m]
                    if 'axon' not in sec.name():
                        vals = vals + [seg.NaTs2_t.h, seg.NaTs2_t.m]

                    if not new_mechs:
                        vals = vals + [seg.cai]

                if 'axon' in sec.name():
                    vals = vals + [seg.K_Pst.h,
                                   seg.K_Pst.m,
                                   seg.K_Tst.h,
                                   seg.K_Tst.m,
                                   seg.Nap_Et2.h,
                                   seg.Nap_Et2.m,
                                   seg.NaTa_t.h,
                                   seg.NaTa_t.m]

        if new_mechs:
            vals = vals + [neuron.h.k4_nadp,
                           neuron.h.k2_cadp, neuron.h.k4_cadp]

        if filename is not None:
            f = open(filename, 'w')
            pickle.dump(vals, f)
            f.close()
        return vals

    def restore_states(self):

        vals = copy.deepcopy(self.rest_vals)
        for sec in neuron.h.allsec():

            for seg in sec:
                seg.v = vals.pop(0)
                seg.Ih.m = vals.pop(0)

                if self.converted:
                    if self.nadp:
                        seg.nadp.pump = vals.pop(0)
                        seg.nadp.pumpna = vals.pop(0)
                        seg.nadp.na = vals.pop(0)
                        seg.nai = seg.nadp.na
                        if ('dend' in sec.name() or 'apic' in sec.name()):
                         #                           seg.k4_coeff_nadp = self.k4_coeff_dend
                            seg.DNa_coeff_nadp = self.DNa_coeff_dend

                    else:
                        vals.pop(0)
                        vals.pop(0)
                        seg.nai = vals.pop(0)

                    seg.cadp.pump = vals.pop(0)
                    seg.cadp.pumpca = vals.pop(0)
                    seg.cadp.ca = vals.pop(0)
                    seg.cai = seg.cadp.ca
                    seg.cadp.CaEndBuffer = vals.pop(0)
                    seg.cadp.EndBuffer = vals.pop(0)

                if 'dend' not in sec.name():
                    seg.Ca_HVA.h = vals.pop(0)
                    seg.Ca_HVA.m = vals.pop(0)
                    seg.Ca_LVAst.h = vals.pop(0)
                    seg.Ca_LVAst.m = vals.pop(0)
                    seg.Im.m = vals.pop(0)
                    seg.SK_E2.z = vals.pop(0)
                    seg.SKv3_1.m = vals.pop(0)
                    if 'axon' not in sec.name():
                        seg.NaTs2_t.h = vals.pop(0)
                        seg.NaTs2_t.m = vals.pop(0)

                    if not self.converted:
                        seg.cai = vals.pop(0)
#                        if 'soma' in sec.name():
#                            print seg.cai

                if 'axon' in sec.name():
                    seg.K_Pst.h = vals.pop(0)
                    seg.K_Pst.m = vals.pop(0)

                    seg.K_Tst.h = vals.pop(0)
                    seg.K_Tst.m = vals.pop(0)

                    seg.Nap_Et2.h = vals.pop(0)
                    seg.Nap_Et2.m = vals.pop(0)

                    seg.NaTa_t.h = vals.pop(0)
                    seg.NaTa_t.m = vals.pop(0)

        if self.converted:
            if self.nadp:
                neuron.h.k4_nadp = vals.pop(0)
            else:
                vals.pop(0)
            neuron.h.k2_cadp = vals.pop(0)
            neuron.h.k4_cadp = vals.pop(0)

            neuron.h.fix_na_nadp = self.fixna
        if self.event_fun is not None:
            self.event_fun()

    def save_rest_state(self, init_run_duration, filename):
        self.run_model(init_run_duration, record=False)
        self.save_states(filename, self.converted)

Loading data, please wait...