GC model (Beining et al 2017)

 Download zip file 
Help downloading and running models
Accession:231818
A companion modeldb entry (NEURON only) to modeldb accession number 231862.
Reference:
1 . Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P (2017) T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s): I A; I Calcium; I h; I K; I K,Ca; I K,leak; I Na,t; I M; Kir2 leak;
Gap Junctions:
Receptor(s):
Gene(s): Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Cav3.2 CACNA1H; HCN1; Nav1.2 SCN2A; Nav1.6 SCN8A; Kir2.1 KCNJ2; Kv1.1 KCNA1; Kv1.4 KCNA4; Kv2.1 KCNB1; Kv3.3 KCNC3; Kv3.4 KCNC4; Kv4.2 KCND2; KCa1.1 KCNMA1; KCa2.2 KCNN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods; Neurogenesis; Conductance distributions;
Implementer(s): Beining, Marcel [beining at fias.uni-frankfurt.de];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; I Na,t; I A; I K; I K,leak; I M; I h; I K,Ca; I Calcium; Kir2 leak;
This NEURON (light) version of the GC compartmental model accompanies
the manuscript 

Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P (2017)
T2N as a new tool for robust electrophysiological modeling
demonstrated for mature and adult-born dentate granule cells.
eLife

Before running, do not forget to compile the .mod files in the lib_mech folder!

For further questions, contact me via beining@fias.uni-frankfurt.de


Loading data, please wait...