2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:232097
This is a biophysical model of the olfactory bulb (OB) that contains three types of neurons: mitral cells, granule cells and periglomerular cells. The model is used to study the cellular and synaptic mechanisms of OB gamma oscillations. We concluded that OB gamma oscillations can be best modeled by the coupled oscillator architecture termed pyramidal resonance inhibition network gamma (PRING).
Reference:
1 . Li G, Cleland TA (2017) A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput Biol 13:e1005760 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron periglomerular GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Olfaction;
Implementer(s): Li, Guoshi [guoshi_li at med.unc.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; GabaA; AMPA; NMDA;
% Plot cell membrane voltages of MCs, PGCs and GCs

clc;
clear all;
close all;

DT = 0.2;        % sampling time: ms
T1 = 1000;
T2 = 3000;
n1 = T1/DT+2;
n2 = T2/DT;

nmitx = 5;
nmity = 5;
npgx  = 5;
npgy  = 5;
ngranx = 10;
ngrany = 10;

    
load tt;
t  = tt(n1:n2);

for i = 0:1:4
    
   s = ['load Vmc22' '_' int2str(i) ';'];    
   eval(s);
        
end


for i = 0:1:(nmitx-1)
   for j = 0:1:(nmity-1) 
     s = ['load Vms' '_' int2str(i) '_' int2str(j) ';'];    
     eval(s);
     
     s = ['U=Vms' '_' int2str(i) '_' int2str(j) ';'];
     eval(s);
     
     U = U(n1:n2);
     s = ['ms' '_' int2str(i) '_' int2str(j) '=U'  ';'];
     eval(s);  
   
   end
end

for i = 0:1:(npgx-1)
   for j = 0:1:(npgy-1) 
    
    s = ['load Vpb' '_' int2str(i) '_' int2str(j) ';'];    
    eval(s);    
    s = ['U=Vpb' '_' int2str(i) '_' int2str(j) ';'];
    eval(s);
    U = U(n1:n2);
    s = ['pb' '_' int2str(i) '_' int2str(j) '=U'  ';'];
    eval(s);    
    
   end
end

for i = 0:1:(ngranx-1)
   for j = 0:1:(ngrany-1) 
    
    s = ['load Vgb' '_' int2str(i) '_' int2str(j) ';'];    
    eval(s);    
    s = ['U=Vgb' '_' int2str(i) '_' int2str(j) ';'];
    eval(s);
    U = U(n1:n2);
    s = ['gb' '_' int2str(i) '_' int2str(j) '=U'  ';'];
    eval(s); 

   end
end


L = length(ms_0_0);



%=====================================================
%           Plot Voltage for Each Cell Type
%=====================================================

XT1 = 2000;
XT2 = 3000;

% For MC
figure;
subplot(2,1,1);
plot(t,ms_0_1,'b', t, ms_4_1,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
title('MC', 'FontSize',14);
set(gca, 'XTick',[ ]);
box('off');
legend('MC[0][1]','MC[4][1]');

subplot(2,1,2);
plot(t,ms_3_4,'b',t,ms_2_4,'r', 'LineWidth', 2);
axis([XT1,XT2,-80,40]);
box('off');
legend('MC[3][4]', 'MC[2][4]'); 


figure;
subplot(2,1,1);
plot(t,ms_3_2,'b', t, ms_4_3,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
title('MC', 'FontSize',14);
set(gca, 'XTick',[ ]);
box('off');
legend('MC[3][2]','MC[4][3]');

subplot(2,1,2);
plot(t,ms_1_1,'b',t,ms_1_4,'r', 'LineWidth', 2);
axis([XT1,XT2,-80,40]);
box('off');
legend('MC[1][1]', 'MC[1][4]'); 



% % ==================================
% For PG
figure;
subplot(2,1,1);
plot(t,pb_0_1,'b', t,pb_1_0,'r', 'LineWidth',2);
axis([XT1,XT2,-80,40]);
set(gca, 'XTick',[ ]);
title('PG', 'FontSize',14);
box('off');

subplot(2,1,2);
plot(t,pb_2_3,'b', t,pb_3_2,'r', 'LineWidth',2);
axis([XT1,XT2,-80,40]);
set(gca, 'XTick',[ ]);
box('off');


% % ====================
% % For GC
figure;
subplot(2,1,1);
plot(t,gb_0_1,'b', t,gb_3_2,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
ylabel('mV', 'FontSize',14);
set(gca, 'XTick',[ ]);
set(gca, 'FontSize',12);
title('GC', 'FontSize',14);
box('off');

subplot(2,1,2);
plot(t,gb_5_9,'b', t,gb_9_5,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
set(gca, 'XTick',[ ]);
set(gca, 'FontSize',12);
box('off');


figure;
subplot(2,1,1);
plot(t,gb_2_4,'b', t,gb_6_5,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
ylabel('mV', 'FontSize',14);
set(gca, 'XTick',[ ]);
set(gca, 'FontSize',12);
title('GC', 'FontSize',14);
box('off');

subplot(2,1,2);
plot(t,gb_7_7,'b', t,gb_8_1,'r','LineWidth',2);
axis([XT1,XT2,-80,40]);
set(gca, 'XTick',[ ]);
set(gca, 'FontSize',12);
box('off');


%===========================================

for i = 0:1:(nmitx-1)
   for j = 0:1:(nmity-1) 
     s = ['clear Vms' '_' int2str(i) '_' int2str(j) ';'];    
     eval(s);       
    end
end

for i = 0:1:(npgx-1)
   for j = 0:1:(npgy-1) 
     s = ['clear Vpb' '_' int2str(i) '_' int2str(j) ';'];    
     eval(s);
    end
end


for i = 0:1:(ngranx-1)
   for j = 0:1:(ngrany-1) 
 
     s = ['clear Vgb' '_' int2str(i) '_' int2str(j) ';'];    
     eval(s);     
      
    end
end


clear U

Loading data, please wait...