TITLE KA
: KA current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002
NEURON {
SUFFIX kamt
USEION k READ ek WRITE ik
RANGE gbar, ik, m, h, sha,shi, k_tauH,sh_tauH
GLOBAL minf, mtau, hinf, htau
}
PARAMETER {
gbar = 0.0002 (mho/cm2)
celsius
ek = 70 (mV) : must be explicitly def. in hoc
v (mV)
a0m=0.04
vhalfm=45
zetam=0.1
gmm=0.75
a0h=0.018
vhalfh=70
zetah=0.2
gmh=0.99
sha=9.9
shi=5.7
q10=3
k_tauH=1.0 : 2.5; added by GL
sh_tauH=0 : 20; added by GL
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ik (mA/cm2)
minf mtau (ms)
hinf htau (ms)
}
STATE { m h}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m*h*(v  ek)
}
INITIAL {
trates(v)
m=minf
h=hinf
}
DERIVATIVE states {
trates(v)
m' = (minfm)/mtau
h' = (hinfh)/htau
}
PROCEDURE trates(v) {
LOCAL qt
qt=q10^((celsius24)/10)
minf = 1/(1 + exp((vsha7.6)/14))
mtau = betm(v)/(qt*a0m*(1+alpm(v)))
hinf = 1/(1 + exp((vshi+47.4)/6))
htau = k_tauH*beth(v)/(qt*a0h*(1+alph(v)))
}
FUNCTION alpm(v(mV)) {
alpm = exp(zetam*(vvhalfm))
}
FUNCTION betm(v(mV)) {
betm = exp(zetam*gmm*(vvhalfm))
}
FUNCTION alph(v(mV)) {
alph = exp(zetah*(vvhalfhsh_tauH))
}
FUNCTION beth(v(mV)) {
beth = exp(zetah*gmh*(vvhalfhsh_tauH))
}
