c 12 Sept 2006, start with /isoldeepVFOK/integrate_tcrx.f & add GABA-B
! 17 Feb. 2003: TCR cell looks much better after adjusting gCaT distrib. per
! Williams & Stuart (peak in dendritic stems); also adjust gAR, which has
! signif. effect on number of fast spikes/LTS.
! 13 Feb. 2003: Diego Contreras felt old TCR cell showed too much attenuation of spikes
! in a burst, and too many spikes/burst at 10 Hz. Following changes undertaken:
! decrease gCaT density to 5 from 7.5 in layers 3, 4
! shift mnaf -3 mV and hnaf -7 mV
! gKA density x 0.2 everywhere
! gKDR density x 0.45 axon, soma, level 2.
! Integration program for tcr cells.
! From dienf.
SUBROUTINE integrate_tcrxB (O, time, numcell, V, curr,
& initialize, firstcell, lastcell,
& gAMPA, gNMDA, gGABA_A, gGABA_B,
& Mg, gapcon, totaxgj, gjtable, dt,
& chi,mnaf,mnap,
& hnaf,mkdr,mka,
& hka,mk2,hk2,
& mkm,mkc,mkahp,
& mcat,hcat,mcal,
& mar)
SAVE
integer, parameter:: numcomp = 137 ! should be compat. with calling prog
integer numcell, totaxgj, gjtable(totaxgj,4)
integer initialize, firstcell, lastcell
INTEGER I, J, L, L1, O
c numcell = total number of tcr cells in system;
c L = cell number relative to entire system
real*8 Mg, gapcon, dt, time
c CINV is 1/C, i.e. inverse capacitance
real*8 mnap(numcomp,numcell), persistentNa_shift, fastNa_shift
real*8 v(numcomp,numcell), chi(numcomp,numcell),
x cinv(numcomp), c(numcomp),
x mnaf(numcomp,numcell), hnaf(numcomp,numcell),
x mkdr(numcomp,numcell),
x mka(numcomp,numcell),hka(numcomp,numcell),
x mk2(numcomp,numcell),
x hk2(numcomp,numcell),mkm(numcomp,numcell),
x mkc(numcomp,numcell),mkahp(numcomp,numcell),
x mcat(numcomp,numcell),hcat(numcomp,numcell),
x mcal(numcomp,numcell),betchi(numcomp),
x mar(numcomp,numcell),jacob(numcomp,numcomp),
x gam(0:numcomp,0:numcomp),gL(numcomp),gnaf(numcomp),
x gnap(numcomp),gkdr(numcomp),gka(numcomp),
x gk2(numcomp),gkm(numcomp),gkc(numcomp),gkahp(numcomp),
x gcat(numcomp),gcaL(numcomp),gar(numcomp),
x gampa(numcomp,numcell),gnmda(numcomp,numcell),
x curr(numcomp,numcell), ggaba_b(numcomp,numcell),
x ggaba_a(numcomp,numcell),cafor(numcomp)
real*8
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
X dbetam_k2(0:640),
X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
X dbetah_k2(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
X dbetam_caL(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640)
c the f's are the functions giving 1st derivatives for evolution of
c the differential equations for the voltages (v), calcium (chi), and
c other state variables.
real*8 fv(numcomp), fchi(numcomp),fmnaf(numcomp),
x fhnaf(numcomp),fmkdr(numcomp),
x fmka(numcomp),fhka(numcomp),fmk2(numcomp),
x fhk2(numcomp),fmnap(numcomp),
x fmkm(numcomp),fmkc(numcomp),fmkahp(numcomp),
x fmcat(numcomp),fhcat(numcomp),
x fmcal(numcomp),fmar(numcomp)
c below are for calculating the partial derivatives
real*8 dfv_dv(numcomp,numcomp), dfv_dchi(numcomp),
x dfv_dmnaf(numcomp),
x dfv_dmnap(numcomp),
x dfv_dhnaf(numcomp),dfv_dmkdr(numcomp),
x dfv_dmka(numcomp),dfv_dhka(numcomp),
x dfv_dmk2(numcomp),dfv_dhk2(numcomp),
x dfv_dmkm(numcomp),dfv_dmkc(numcomp),
x dfv_dmkahp(numcomp),dfv_dmcat(numcomp),
x dfv_dhcat(numcomp),dfv_dmcal(numcomp),
x dfv_dmar(numcomp)
real*8 dfchi_dv(numcomp), dfchi_dchi(numcomp),
x dfmnaf_dmnaf(numcomp), dfmnaf_dv(numcomp),
x dfhnaf_dhnaf(numcomp),
x dfmnap_dmnap(numcomp), dfmnap_dv(numcomp),
x dfhnaf_dv(numcomp),dfmkdr_dmkdr(numcomp),
x dfmkdr_dv(numcomp),
x dfmka_dmka(numcomp),dfmka_dv(numcomp),
x dfhka_dhka(numcomp),dfhka_dv(numcomp),
x dfmk2_dmk2(numcomp),dfmk2_dv(numcomp),
x dfhk2_dhk2(numcomp),dfhk2_dv(numcomp),
x dfmkm_dmkm(numcomp),dfmkm_dv(numcomp),
x dfmkc_dmkc(numcomp),dfmkc_dv(numcomp),
x dfmcat_dmcat(numcomp),dfmcat_dv(numcomp),
x dfhcat_dhcat(numcomp),
x dfhcat_dv(numcomp),dfmcal_dmcal(numcomp),
x dfmcal_dv(numcomp),
x dfmar_dmar(numcomp),dfmar_dv(numcomp),
x dfmkahp_dchi(numcomp),
x dfmkahp_dmkahp(numcomp), dt2, outrcd(20)
REAL*8 vL(numcomp),vk(numcomp)
REAL*8 vna,var,vca,vgaba_a,Z,Z1,Z2
INTEGER K0, K1, K2, NEIGH(numcomp,11), NNUM(numcomp)
REAL*8 OPEN(numcomp),gamma(numcomp),gamma_prime(numcomp)
c gamma is function of chi used in calculating KC conductance
REAL*8 alpham_ahp(numcomp), alpham_ahp_prime(numcomp)
REAL*8 gna_tot(numcomp),gk_tot(numcomp)
REAL*8 gca_tot(numcomp),gar_tot(numcomp)
REAL*8 gca_high(numcomp), A, BB1, BB2
c this will be gCa conductance corresponding to high-thresh channels
c if (O.eq.1) then
if (initialize.eq.0) then
c Program assumes A, BB1, BB2 defined in calling program
c as follows:
A = DEXP(-2.847d0)
BB1 = DEXP(-.693d0)
BB2 = DEXP(-3.101d0)
CALL TCR_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
X alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar)
CALL TCRMAJ (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
X GCAT,GCAL,GNAF,GNAP,GAR,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM)
do i = 1, numcomp
cinv(i) = 1.d0 / c(i)
end do
vL = -70.d0
vK = -95.d0
VNA = 50.d0
VCA = 125.d0
VAR = -43.d0
VAR = -35.d0
c -43 mV from Huguenard & McCormick
VGABA_A = -81.d0
c ? initialize membrane state variables?
do i = 1, numcomp
do j = 1, numcell
v(i,j) = VL(i)
end do
end do
chi = 0.d0
k1 = idnint (4.d0 * (-85.d0 + 120.d0))
c k1 = idnint (4.d0 * (v(1) + 120.d0))
mnaf = 0.d0
mnap = 0.d0
mkdr = 0.d0
mka = 0.d0
mk2 = 0.d0
mkm = 0.d0
mkc = 0.d0
mkahp = 0.d0
mcat = 0.d0
mcal = 0.d0
open = 0.d0
hnaf = alphah_naf(k1)/(alphah_naf(k1)+betah_naf(k1))
hka = alphah_ka(k1)/(alphah_ka(k1)+betah_ka(k1))
hk2 = alphah_k2(k1)/(alphah_k2(k1)+betah_k2(k1))
hcat=alphah_cat(k1)/(alphah_cat(k1)+betah_cat(k1))
c mar=alpham_ar(k1)/(alpham_ar(k1)+betam_ar(k1))
mar= .25d0
c gnaf = 0.d0
c gnap = 0.d0
c gkdr = 0.d0
c gka = 0.d0
c gk2 = 0.d0
gkm = 0.d0
c gkc = 0.d0
gkahp = 0.d0
c gcat = 0.d0
c gcaL = 0.d0
c gar = 0.d0
! 13 Sept. 2006: for messing about with gCaT
do i = 1, 137
gCaT(i) = 1.d0 * gCaT(i)
end do
! 13 Sept. 2006: for messing about with h current
do i = 1, 137
gAR(i) = 1.d0 * gAR(i)
end do
do i = 1, 137
gKA(i) = 0.2d0 * gKA(i)
end do
do i = 132, 137 ! axon
gKDR(i) = 0.45d0 * gKDR(i)
end do
gKDR(1) = 0.45d0 * gKDR(1)
do i = 2, 119, 13 ! level 2
gKDR(i) = 0.45d0 * gKDR(i)
end do
c End initialization
goto 6000
endif
c do 4000, L = 1, numcell
do 4000, L = firstcell, lastcell
DO 301, I = 1, numcomp
FV(I) = -GL(I) * (V(I,L) - VL(i)) * cinv(i)
DO 302, J = 1, NNUM(I)
K = NEIGH(I,J)
302 FV(I) = FV(I) + GAM(I,K) * (V(K,L) - V(I,L)) * cinv(i)
301 CONTINUE
CALL FNMDA (V, OPEN, numcell, numcomp, MG, L,
& A, BB1, BB2)
DO 421, I = 1, numcomp
FV(I) = FV(I) + ( CURR(I,L)
X - (gampa(I,L) + open(i) * gnmda(I,L))*V(I,L)
X - ggaba_a(I,L)*(V(I,L)-Vgaba_a)
X - ggaba_b(I,L)*(V(I,L)-VK(i) ) ) * cinv(i)
c above assumes equil. potential for AMPA & NMDA = 0 mV
421 continue
do m = 1, totaxgj
if (gjtable(m,1).eq.L) then
L1 = gjtable(m,3)
igap1 = gjtable(m,2)
igap2 = gjtable(m,4)
fv(igap1) = fv(igap1) + gapcon *
& (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
else if (gjtable(m,3).eq.L) then
L1 = gjtable(m,1)
igap1 = gjtable(m,4)
igap2 = gjtable(m,2)
fv(igap1) = fv(igap1) + gapcon *
& (v(igap2,L1) - v(igap1,L)) * cinv(igap1)
endif
end do ! do m
do i = 1, numcomp
gamma(i) = dmin1 (1.d0, .004d0 * chi(i,L))
if (chi(i,L).le.250.d0) then
gamma_prime(i) = .004d0
else
gamma_prime(i) = 0.d0
endif
end do
DO 88, I = 1, numcomp
gna_tot(i) = gnaf(i) * (mnaf(i,L)**3) * hnaf(i,L) +
c x gnap(i) * (mnaf(i,L)**3)
x gnap(i) * mnap(i,L)
gk_tot(i) = gkdr(i) * (mkdr(i,L)**4) +
x gka(i) * (mka(i,L)**4) * hka(i,L) +
x gk2(i) * mk2(i,L) * hk2(i,L) +
x gkm(i) * mkm(i,L) +
x gkc(i) * mkc(i,L) * gamma(i) +
x gkahp(i)* mkahp(i,L)
gca_tot(i) = gcat(i) * (mcat(i,L)**2) * hcat(i,L) +
x gcaL(i) * (mcaL(i,L)**2)
gca_high(i) =
x gcaL(i) * (mcaL(i,L)**2)
gar_tot(i) = gar(i) * mar(i,L)
FV(I) = FV(I) - ( gna_tot(i) * (v(i,L) - vna)
X + gk_tot(i) * (v(i,L) - vK(i))
X + gca_tot(i) * (v(i,L) - vCa)
X + gar_tot(i) * (v(i,L) - var) ) * cinv(i)
88 continue
do i = 1, numcomp
do j = 1, numcomp
if (i.ne.j) then
dfv_dv(i,j) = jacob(i,j)
else
dfv_dv(i,j) = jacob(i,i) - cinv(i) *
X (gna_tot(i) + gk_tot(i) + gca_tot(i) + gar_tot(i)
X + ggaba_a(i,L) + ggaba_b(i,L) + gampa(i,L)
X + open(i) * gnmda(I,L) )
endif
end do
end do
do i = 1, numcomp
dfv_dchi(i) = - cinv(i) * gkc(i) * mkc(i,L) *
x gamma_prime(i) * (v(i,L)-vK(i))
dfv_dmnaf(i) = -3.d0 * cinv(i) * (mnaf(i,L)**2) *
X (gnaf(i) * hnaf(i,L) ) * (v(i,L) - vna)
dfv_dmnap(i) = - cinv(i) *
X ( gnap(i)) * (v(i,L) - vna)
dfv_dhnaf(i) = - cinv(i) * gnaf(i) * (mnaf(i,L)**3) *
X (v(i,L) - vna)
dfv_dmkdr(i) = -4.d0 * cinv(i) * gkdr(i) * (mkdr(i,L)**3)
X * (v(i,L) - vK(i))
dfv_dmka(i) = -4.d0 * cinv(i) * gka(i) * (mka(i,L)**3) *
X hka(i,L) * (v(i,L) - vK(i))
dfv_dhka(i) = - cinv(i) * gka(i) * (mka(i,L)**4) *
X (v(i,L) - vK(i))
dfv_dmk2(i) = - cinv(i) * gk2(i) * hk2(i,L) * (v(i,L)-vK(i))
dfv_dhk2(i) = - cinv(i) * gk2(i) * mk2(i,L) * (v(i,L)-vK(i))
dfv_dmkm(i) = - cinv(i) * gkm(i) * (v(i,L) - vK(i))
dfv_dmkc(i) = - cinv(i) * gkc(i) * gamma(i) * (v(i,L)-vK(i))
dfv_dmkahp(i)= - cinv(i) * gkahp(i) * (v(i,L) - vK(i))
dfv_dmcat(i) = -2.d0 * cinv(i) * gcat(i) * mcat(i,L) *
X hcat(i,L) * (v(i,L) - vCa)
dfv_dhcat(i) = - cinv(i) * gcat(i) * (mcat(i,L)**2) *
X (v(i,L) - vCa)
dfv_dmcal(i) = -2.d0 * cinv(i) * gcal(i) * mcal(i,L) *
X (v(i,L) - vCa)
dfv_dmar(i) = - cinv(i) * gar(i) * (v(i,L) - var)
end do
do i = 1, numcomp
fchi(i) = - cafor(i) * gca_high(i) * (v(i,L) - vca)
x - betchi(i) * chi(i,L)
dfchi_dv(i) = - cafor(i) * gca_high(i)
dfchi_dchi(i) = - betchi(i)
end do
do i = 1, 137
alpham_ahp(i) = dmin1(0.2d-4 * chi(i,L),0.01d0)
if (chi(i,L).le.500.d0) then
alpham_ahp_prime(i) = 0.2d-4
else
alpham_ahp_prime(i) = 0.d0
endif
end do
do i = 1, 137
fmkahp(i) = alpham_ahp(i) * (1.d0 - mkahp(i,L))
x -.001d0 * mkahp(i,L)
dfmkahp_dmkahp(i) = - alpham_ahp(i) - .001d0
dfmkahp_dchi(i) = alpham_ahp_prime(i) *
x (1.d0 - mkahp(i,L))
end do
do i = 1, numcomp
K1 = IDNINT ( 4.d0 * (V(I,L) + 120.d0) )
IF (K1.GT.640) K1 = 640
IF (K1.LT. 0) K1 = 0
persistentNa_shift = 10.d0
K2 = IDNINT ( 4.d0 * (V(I,L)+persistentNa_shift+ 120.d0))
IF (K2.GT.640) K2 = 640
IF (K2.LT. 0) K2 = 0
fastNa_shift = -2.5d0
K0 = IDNINT ( 4.d0 * (V(I,L)+ fastNa_shift+ 120.d0) )
IF (K0.GT.640) K0 = 640
IF (K0.LT. 0) K0 = 0
fmnaf(i) = alpham_naf(k0) * (1.d0 - mnaf(i,L)) -
X betam_naf(k0) * mnaf(i,L)
fmnap(i) = alpham_naf(k2) * (1.d0 - mnap(i,L)) -
X betam_naf(k2) * mnap(i,L)
fhnaf(i) = alphah_naf(k1) * (1.d0 - hnaf(i,L)) -
X betah_naf(k1) * hnaf(i,L)
fmkdr(i) = alpham_kdr(k1) * (1.d0 - mkdr(i,L)) -
X betam_kdr(k1) * mkdr(i,L)
fmka(i) = alpham_ka (k1) * (1.d0 - mka(i,L)) -
X betam_ka (k1) * mka(i,L)
fhka(i) = alphah_ka (k1) * (1.d0 - hka(i,L)) -
X betah_ka (k1) * hka(i,L)
fmk2(i) = alpham_k2 (k1) * (1.d0 - mk2(i,L)) -
X betam_k2 (k1) * mk2(i,L)
fhk2(i) = alphah_k2 (k1) * (1.d0 - hk2(i,L)) -
X betah_k2 (k1) * hk2(i,L)
fmkm(i) = alpham_km (k1) * (1.d0 - mkm(i,L)) -
X betam_km (k1) * mkm(i,L)
fmkc(i) = alpham_kc (k1) * (1.d0 - mkc(i,L)) -
X betam_kc (k1) * mkc(i,L)
fmcat(i) = alpham_cat(k1) * (1.d0 - mcat(i,L)) -
X betam_cat(k1) * mcat(i,L)
fhcat(i) = alphah_cat(k1) * (1.d0 - hcat(i,L)) -
X betah_cat(k1) * hcat(i,L)
fmcaL(i) = alpham_caL(k1) * (1.d0 - mcaL(i,L)) -
X betam_caL(k1) * mcaL(i,L)
fmar(i) = alpham_ar (k1) * (1.d0 - mar(i,L)) -
X betam_ar (k1) * mar(i,L)
dfmnaf_dv(i) = dalpham_naf(k0) * (1.d0 - mnaf(i,L))-
X dbetam_naf(k0) * mnaf(i,L)
dfmnap_dv(i) = dalpham_naf(k2) * (1.d0 - mnap(i,L))-
X dbetam_naf(k2) * mnap(i,L)
dfhnaf_dv(i) = dalphah_naf(k1) * (1.d0 - hnaf(i,L))-
X dbetah_naf(k1) * hnaf(i,L)
dfmkdr_dv(i) = dalpham_kdr(k1) * (1.d0 - mkdr(i,L))-
X dbetam_kdr(k1) * mkdr(i,L)
dfmka_dv(i) = dalpham_ka(k1) * (1.d0 - mka(i,L)) -
X dbetam_ka(k1) * mka(i,L)
dfhka_dv(i) = dalphah_ka(k1) * (1.d0 - hka(i,L)) -
X dbetah_ka(k1) * hka(i,L)
dfmk2_dv(i) = dalpham_k2(k1) * (1.d0 - mk2(i,L)) -
X dbetam_k2(k1) * mk2(i,L)
dfhk2_dv(i) = dalphah_k2(k1) * (1.d0 - hk2(i,L)) -
X dbetah_k2(k1) * hk2(i,L)
dfmkm_dv(i) = dalpham_km(k1) * (1.d0 - mkm(i,L)) -
X dbetam_km(k1) * mkm(i,L)
dfmkc_dv(i) = dalpham_kc(k1) * (1.d0 - mkc(i,L)) -
X dbetam_kc(k1) * mkc(i,L)
dfmcat_dv(i) = dalpham_cat(k1) * (1.d0 - mcat(i,L))-
X dbetam_cat(k1) * mcat(i,L)
dfhcat_dv(i) = dalphah_cat(k1) * (1.d0 - hcat(i,L))-
X dbetah_cat(k1) * hcat(i,L)
dfmcaL_dv(i) = dalpham_caL(k1) * (1.d0 - mcaL(i,L))-
X dbetam_caL(k1) * mcaL(i,L)
dfmar_dv(i) = dalpham_ar(k1) * (1.d0 - mar(i,L)) -
X dbetam_ar(k1) * mar(i,L)
dfmnaf_dmnaf(i) = - alpham_naf(k0) - betam_naf(k0)
dfmnap_dmnap(i) = - alpham_naf(k2) - betam_naf(k2)
dfhnaf_dhnaf(i) = - alphah_naf(k1) - betah_naf(k1)
dfmkdr_dmkdr(i) = - alpham_kdr(k1) - betam_kdr(k1)
dfmka_dmka(i) = - alpham_ka (k1) - betam_ka (k1)
dfhka_dhka(i) = - alphah_ka (k1) - betah_ka (k1)
dfmk2_dmk2(i) = - alpham_k2 (k1) - betam_k2 (k1)
dfhk2_dhk2(i) = - alphah_k2 (k1) - betah_k2 (k1)
dfmkm_dmkm(i) = - alpham_km (k1) - betam_km (k1)
dfmkc_dmkc(i) = - alpham_kc (k1) - betam_kc (k1)
dfmcat_dmcat(i) = - alpham_cat(k1) - betam_cat(k1)
dfhcat_dhcat(i) = - alphah_cat(k1) - betah_cat(k1)
dfmcaL_dmcaL(i) = - alpham_caL(k1) - betam_caL(k1)
dfmar_dmar(i) = - alpham_ar (k1) - betam_ar (k1)
end do
dt2 = 0.5d0 * dt * dt
do i = 1, 137
v(i,L) = v(i,L) + dt * fv(i)
do j = 1, 137
v(i,L) = v(i,L) + dt2 * dfv_dv(i,j) * fv(j)
end do
v(i,L) = v(i,L) + dt2 * ( dfv_dchi(i) * fchi(i)
X + dfv_dmnaf(i) * fmnaf(i)
X + dfv_dmnap(i) * fmnap(i)
X + dfv_dhnaf(i) * fhnaf(i)
X + dfv_dmkdr(i) * fmkdr(i)
X + dfv_dmka(i) * fmka(i)
X + dfv_dhka(i) * fhka(i)
X + dfv_dmk2(i) * fmk2(i)
X + dfv_dhk2(i) * fhk2(i)
X + dfv_dmkm(i) * fmkm(i)
X + dfv_dmkc(i) * fmkc(i)
X + dfv_dmkahp(i)* fmkahp(i)
X + dfv_dmcat(i) * fmcat(i)
X + dfv_dhcat(i) * fhcat(i)
X + dfv_dmcaL(i) * fmcaL(i)
X + dfv_dmar(i) * fmar(i) )
chi(i,L) = chi(i,L) + dt * fchi(i) + dt2 *
X (dfchi_dchi(i) * fchi(i) + dfchi_dv(i) * fv(i))
mnaf(i,L) = mnaf(i,L) + dt * fmnaf(i) + dt2 *
X (dfmnaf_dmnaf(i) * fmnaf(i) + dfmnaf_dv(i)*fv(i))
mnap(i,L) = mnap(i,L) + dt * fmnap(i) + dt2 *
X (dfmnap_dmnap(i) * fmnap(i) + dfmnap_dv(i)*fv(i))
hnaf(i,L) = hnaf(i,L) + dt * fhnaf(i) + dt2 *
X (dfhnaf_dhnaf(i) * fhnaf(i) + dfhnaf_dv(i)*fv(i))
mkdr(i,L) = mkdr(i,L) + dt * fmkdr(i) + dt2 *
X (dfmkdr_dmkdr(i) * fmkdr(i) + dfmkdr_dv(i)*fv(i))
mka(i,L) = mka(i,L) + dt * fmka(i) + dt2 *
X (dfmka_dmka(i) * fmka(i) + dfmka_dv(i) * fv(i))
hka(i,L) = hka(i,L) + dt * fhka(i) + dt2 *
X (dfhka_dhka(i) * fhka(i) + dfhka_dv(i) * fv(i))
mk2(i,L) = mk2(i,L) + dt * fmk2(i) + dt2 *
X (dfmk2_dmk2(i) * fmk2(i) + dfmk2_dv(i) * fv(i))
hk2(i,L) = hk2(i,L) + dt * fhk2(i) + dt2 *
X (dfhk2_dhk2(i) * fhk2(i) + dfhk2_dv(i) * fv(i))
mkm(i,L) = mkm(i,L) + dt * fmkm(i) + dt2 *
X (dfmkm_dmkm(i) * fmkm(i) + dfmkm_dv(i) * fv(i))
mkc(i,L) = mkc(i,L) + dt * fmkc(i) + dt2 *
X (dfmkc_dmkc(i) * fmkc(i) + dfmkc_dv(i) * fv(i))
mkahp(i,L) = mkahp(i,L) + dt * fmkahp(i) + dt2 *
X (dfmkahp_dmkahp(i)*fmkahp(i) + dfmkahp_dchi(i)*fchi(i))
mcat(i,L) = mcat(i,L) + dt * fmcat(i) + dt2 *
X (dfmcat_dmcat(i) * fmcat(i) + dfmcat_dv(i) * fv(i))
hcat(i,L) = hcat(i,L) + dt * fhcat(i) + dt2 *
X (dfhcat_dhcat(i) * fhcat(i) + dfhcat_dv(i) * fv(i))
mcaL(i,L) = mcaL(i,L) + dt * fmcaL(i) + dt2 *
X (dfmcaL_dmcaL(i) * fmcaL(i) + dfmcaL_dv(i) * fv(i))
mar(i,L) = mar(i,L) + dt * fmar(i) + dt2 *
X (dfmar_dmar(i) * fmar(i) + dfmar_dv(i) * fv(i))
end do
4000 CONTINUE
c all tcr cells on this node integrated
6000 END
C SETS UP TABLES FOR RATE FUNCTIONS
SUBROUTINE TCR_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_k2 , betam_k2 , dalpham_k2 , dbetam_k2 ,
X alphah_k2 , betah_k2 , dalphah_k2 , dbetah_k2 ,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_caL, betam_caL, dalpham_caL, dbetam_caL,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar)
INTEGER I,J,K
real*8 minf, hinf, taum, tauh, V, Z, shift_hnaf,
X shift_mkdr, shift_mnaf,
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_k2(0:640), betam_k2(0:640), dalpham_k2(0:640),
X dbetam_k2(0:640),
X alphah_k2(0:640), betah_k2(0:640), dalphah_k2(0:640),
X dbetah_k2(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_caL(0:640),betam_caL(0:640),dalpham_caL(0:640),
X dbetam_caL(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640)
C FOR VOLTAGE, RANGE IS -120 TO +40 MV (absol.), 0.25 MV RESOLUTION
DO 1, I = 0, 640
V = dble (I)
V = (V / 4.d0) - 120.d0
c gNa
shift_mnaf = -3.d0
V = V + shift_mnaf
minf = 1.d0/(1.d0 + dexp((-V-38.d0)/10.d0))
if (v.le.-30.d0) then
taum = .025d0 + .14d0*dexp((v+30.d0)/10.d0)
else
taum = .02d0 + .145d0*dexp((-v-30.d0)/10.d0)
endif
c from principal c. data, Martina & Jonas 1997, tau x 0.5
c Note that minf about the same for interneuron & princ. cell.
alpham_naf(i) = minf / taum
betam_naf(i) = 1.d0/taum - alpham_naf(i)
V = V - shift_mnaf
shift_hnaf = -7.d0
hinf = 1.d0/(1.d0 +
x dexp((v + shift_hnaf + 62.9d0)/10.7d0))
tauh = 0.15d0 + 1.15d0/(1.d0+dexp((v+37.d0)/15.d0))
c from princ. cell data, Martina & Jonas 1997, tau x 0.5
alphah_naf(i) = hinf / tauh
betah_naf(i) = 1.d0/tauh - alphah_naf(i)
shift_mkdr = 0.d0
c delayed rectifier, non-inactivating
minf = 1.d0/(1.d0+dexp((-v-shift_mkdr-29.5d0)/10.0d0))
if (v.le.-10.d0) then
taum = .25d0 + 4.35d0*dexp((v+10.d0)/10.d0)
else
taum = .25d0 + 4.35d0*dexp((-v-10.d0)/10.d0)
endif
alpham_kdr(i) = minf / taum
betam_kdr(i) = 1.d0 /taum - alpham_kdr(i)
c from Martina, Schultz et al., 1998. See espec. Table 1.
c A current: Huguenard & McCormick 1992, J Neurophysiol (TCR)
minf = 1.d0/(1.d0 + dexp((-v-60.d0)/8.5d0))
hinf = 1.d0/(1.d0 + dexp((v+78.d0)/6.d0))
taum = .185d0 + .5d0/(dexp((v+35.8d0)/19.7d0) +
x dexp((-v-79.7d0)/12.7d0))
if (v.le.-63.d0) then
tauh = .5d0/(dexp((v+46.d0)/5.d0) +
x dexp((-v-238.d0)/37.5d0))
else
tauh = 9.5d0
endif
alpham_ka(i) = minf/taum
betam_ka(i) = 1.d0 / taum - alpham_ka(i)
alphah_ka(i) = hinf / tauh
betah_ka(i) = 1.d0 / tauh - alphah_ka(i)
c h-current (anomalous rectifier), Huguenard & McCormick, 1992
minf = 1.d0/(1.d0 + dexp((v+75.d0)/5.5d0))
taum = 1.d0/(dexp(-14.6d0 -0.086d0*v) +
x dexp(-1.87 + 0.07d0*v))
alpham_ar(i) = minf / taum
betam_ar(i) = 1.d0 / taum - alpham_ar(i)
c K2 K-current, McCormick & Huguenard
minf = 1.d0/(1.d0 + dexp((-v-10.d0)/17.d0))
hinf = 1.d0/(1.d0 + dexp((v+58.d0)/10.6d0))
taum = 4.95d0 + 0.5d0/(dexp((v-81.d0)/25.6d0) +
x dexp((-v-132.d0)/18.d0))
tauh = 60.d0 + 0.5d0/(dexp((v-1.33d0)/200.d0) +
x dexp((-v-130.d0)/7.1d0))
alpham_k2(i) = minf / taum
betam_k2(i) = 1.d0/taum - alpham_k2(i)
alphah_k2(i) = hinf / tauh
betah_k2(i) = 1.d0 / tauh - alphah_k2(i)
c voltage part of C-current, using 1994 kinetics, shift 60 mV
if (v.le.-10.d0) then
alpham_kc(i) = (2.d0/37.95d0)*dexp((v+50.d0)/11.d0 -
x (v+53.5)/27.d0)
betam_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)-alpham_kc(i)
else
alpham_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)
betam_kc(i) = 0.d0
endif
c high-threshold gCa, from 1994, with 60 mV shift & no inactivn.
alpham_cal(i) = 1.6d0/(1.d0+dexp(-.072d0*(v-5.d0)))
betam_cal(i) = 0.1d0 * ((v+8.9d0)/5.d0) /
x (dexp((v+8.9d0)/5.d0) - 1.d0)
c M-current, from plast.f, with 60 mV shift
alpham_km(i) = .02d0/(1.d0+dexp((-v-20.d0)/5.d0))
betam_km(i) = .01d0 * dexp((-v-43.d0)/18.d0)
c T-current, from Destexhe, Neubig et al., 1998
minf = 1.d0/(1.d0 + dexp((-v-56.d0)/6.2d0))
hinf = 1.d0/(1.d0 + dexp((v+80.d0)/4.d0))
taum = 0.204d0 + .333d0/(dexp((v+15.8d0)/18.2d0) +
x dexp((-v-131.d0)/16.7d0))
if (v.le.-81.d0) then
tauh = 0.333 * dexp((v+466.d0)/66.6d0)
else
tauh = 9.32d0 + 0.333d0*dexp((-v-21.d0)/10.5d0)
endif
alpham_cat(i) = minf / taum
betam_cat(i) = 1.d0/taum - alpham_cat(i)
alphah_cat(i) = hinf / tauh
betah_cat(i) = 1.d0 / tauh - alphah_cat(i)
1 CONTINUE
do 2, i = 0, 639
dalpham_naf(i) = (alpham_naf(i+1)-alpham_naf(i))/.25d0
dbetam_naf(i) = (betam_naf(i+1)-betam_naf(i))/.25d0
dalphah_naf(i) = (alphah_naf(i+1)-alphah_naf(i))/.25d0
dbetah_naf(i) = (betah_naf(i+1)-betah_naf(i))/.25d0
dalpham_kdr(i) = (alpham_kdr(i+1)-alpham_kdr(i))/.25d0
dbetam_kdr(i) = (betam_kdr(i+1)-betam_kdr(i))/.25d0
dalpham_ka(i) = (alpham_ka(i+1)-alpham_ka(i))/.25d0
dbetam_ka(i) = (betam_ka(i+1)-betam_ka(i))/.25d0
dalphah_ka(i) = (alphah_ka(i+1)-alphah_ka(i))/.25d0
dbetah_ka(i) = (betah_ka(i+1)-betah_ka(i))/.25d0
dalpham_k2(i) = (alpham_k2(i+1)-alpham_k2(i))/.25d0
dbetam_k2(i) = (betam_k2(i+1)-betam_k2(i))/.25d0
dalphah_k2(i) = (alphah_k2(i+1)-alphah_k2(i))/.25d0
dbetah_k2(i) = (betah_k2(i+1)-betah_k2(i))/.25d0
dalpham_km(i) = (alpham_km(i+1)-alpham_km(i))/.25d0
dbetam_km(i) = (betam_km(i+1)-betam_km(i))/.25d0
dalpham_kc(i) = (alpham_kc(i+1)-alpham_kc(i))/.25d0
dbetam_kc(i) = (betam_kc(i+1)-betam_kc(i))/.25d0
dalpham_cat(i) = (alpham_cat(i+1)-alpham_cat(i))/.25d0
dbetam_cat(i) = (betam_cat(i+1)-betam_cat(i))/.25d0
dalphah_cat(i) = (alphah_cat(i+1)-alphah_cat(i))/.25d0
dbetah_cat(i) = (betah_cat(i+1)-betah_cat(i))/.25d0
dalpham_caL(i) = (alpham_cal(i+1)-alpham_cal(i))/.25d0
dbetam_caL(i) = (betam_cal(i+1)-betam_cal(i))/.25d0
dalpham_ar(i) = (alpham_ar(i+1)-alpham_ar(i))/.25d0
dbetam_ar(i) = (betam_ar(i+1)-betam_ar(i))/.25d0
2 CONTINUE
END
SUBROUTINE TCRMAJ
C BRANCHED ACTIVE DENDRITES
X (GL,GAM,GKDR,GKA,GKC,GKAHP,GK2,GKM,
X GCAT,GCAL,GNAF,GNAP,GAR,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM)
c Conductances: leak gL, coupling g, delayed rectifier gKDR, A gKA,
c C gKC, AHP gKAHP, K2 gK2, M gKM, low thresh Ca gCAT, high thresh
c gCAL, fast Na gNAF, persistent Na gNAP, h or anom. rectif. gAR.
c Note VAR = equil. potential for anomalous rectifier.
c Soma = comp. 1; 10 dendrites each with 13 compartments, 6-comp. axon
c Drop "glc"-like terms, just using "gl"-like
c CAFOR corresponds to "phi" in Traub et al., 1994
c Consistent set of units: nF, mV, ms, nA, microS
integer, parameter:: numcomp = 137
REAL*8 C(numcomp),GL(numcomp),
& GAM(0:numcomp,0:numcomp),GNAF(numcomp),GCAT(numcomp)
REAL*8 GKDR(numcomp),GKA(numcomp)
REAL*8 GKC(numcomp),GKAHP(numcomp),GCAL(numcomp)
REAL*8 GK2(numcomp),GKM(numcomp)
REAL*8 GNAP(numcomp),GAR(numcomp), CDENS, RM_AXON
REAL*8 JACOB(numcomp,numcomp),RI_SD,RI_AXON,RM_SD
INTEGER LEVEL(numcomp)
REAL*8 GNAF_DENS(0:4), GCAT_DENS(0:4), GKDR_DENS(0:4)
REAL*8 GKA_DENS(0:4), GKC_DENS(0:4), GKAHP_DENS(0:4)
REAL*8 GCAL_DENS(0:4), GK2_DENS(0:4), GKM_DENS(0:4)
REAL*8 GNAP_DENS(0:4), GAR_DENS(0:4)
REAL*8 RES, RINPUT, ELEN(numcomp)
REAL*8 RSOMA, PI, BETCHI(numcomp), CAFOR(numcomp)
REAL*8 RAD(numcomp),LEN(numcomp),GAM1,GAM2
REAL*8 RIN, D(numcomp), AREA(numcomp), RI, Z
INTEGER NEIGH(numcomp,11), NNUM(numcomp)
C FOR ESTABLISHING TOPOLOGY OF COMPARTMENTS
RI_SD = 175.d0
RM_SD = 26400.d0
RI_AXON = 100.d0
RM_AXON = 1000.d0
CDENS = 0.9d0
PI = 3.14159d0
gnaf_dens(0) = 400.d0
gnaf_dens(1) = 100.d0
gnaf_dens(2) = 100.d0
gnaf_dens(3) = 5.d0
gnaf_dens(4) = 5.d0
c gnaf_dens(3) = 40.d0
c gnaf_dens(4) = 40.d0
c gnaf_dens(3) = 20.d0
c gnaf_dens(4) = 20.d0
gkdr_dens(0) = 400.d0
gkdr_dens(1) = 75.d0
c gkdr_dens(2) = 75.d0
c gkdr_dens(3) = 2.d0
c gkdr_dens(4) = 2.d0
gkdr_dens(2) = 50.d0
gkdr_dens(3) = 0.d0
gkdr_dens(4) = 0.d0
do i = 1, 4
gnap_dens(i) = 0.002d0 * gnaf_dens(i)
c gnap_dens(i) = 0.01d0 * gnaf_dens(i)
c gnap_dens(i) = 0.10d0 * gnaf_dens(i)
end do
c gnap_dens(1) = 1.d0
c gnap_dens(2) = 1.d0
c gnap_dens(3) = 1.d0
c gnap_dens(4) = 1.d0
c gcat_dens(1) = 3.00d0
c gcat_dens(2) = 3.00d0
c gcat_dens(3) = 6.0d0
c gcat_dens(4) = 6.0d0
! gcat_dens(1) = 0.50d0
gcat_dens(1) = 3.00d0
gcat_dens(2) = 6.00d0
c gcat_dens(3) = 3.0d0
c gcat_dens(4) = 0.5d0
gcat_dens(3) = 5.0d0
gcat_dens(4) = 2.5d0
c gcat_dens(3) = 7.5d0
c gcat_dens(4) = 7.5d0
gcal_dens(1) = 0.5d0
gcal_dens(2) = 0.5d0
c gcal_dens(3) = 1.0d0
c gcal_dens(4) = 1.0d0
gcal_dens(3) = 0.25d0
gcal_dens(4) = 0.25d0
gka_dens(0) = 1.d0
gka_dens(1) = 30.d0
gka_dens(2) = 30.d0
gka_dens(3) = 1.d0
gka_dens(4) = 1.d0
gkc_dens(1) = 12.00d0
gkc_dens(2) = 12.00d0
gkc_dens(3) = 20.00d0
gkc_dens(4) = 20.00d0
do i = 1, 4
gkm_dens(i) = 0.50d0
end do
gk2_dens(0) = .5d0
c gk2_dens(1) = .5d0
c gk2_dens(2) = .5d0
c gk2_dens(3) = 5.d0
c gk2_dens(4) = 5.d0
! gk2_dens(1) = 2.d0
! gk2_dens(2) = 2.d0
! gk2_dens(3) = 2.d0
! gk2_dens(4) = 2.d0
gk2_dens(1) = 0.1d0
gk2_dens(2) = 0.1d0
gk2_dens(3) = 0.1d0
gk2_dens(4) = 0.1d0
do i = 1, 4
gkahp_dens(i) = 0.05d0
end do
c gar_dens(1) = 2.5d0
c gar_dens(2) = 2.5d0
c gar_dens(3) = 5.0d0
c gar_dens(4) = 5.0d0
c gar_dens(0) = 1.50d0
c Run Q uses 1.5
c gar_dens(1) = 1.5d0
c gar_dens(2) = 1.5d0
c gar_dens(3) = 1.50d0
c gar_dens(4) = 1.50d0
c gar_dens(1) = 0.5d0
c gar_dens(2) = 0.5d0
c gar_dens(3) = 0.50d0
c gar_dens(4) = 0.50d0
gar_dens(1) = 0.25d0
gar_dens(2) = 0.50d0
gar_dens(3) = 0.30d0
gar_dens(4) = 0.30d0
c WRITE (6,9988)
9988 FORMAT(2X,'I',4X,'NADENS',' CADENS(T)',' KDRDEN',' KAHPDE',
X ' KCDENS',' KADENS')
DO 9989, I = 0, 4
c WRITE (6,9990) I, gnaf_dens(i), gcat_dens(i), gkdr_dens(i),
c X gkahp_dens(i), gkc_dens(i), gka_dens(i)
9990 FORMAT(2X,I2,2X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2)
9989 CONTINUE
level(1) = 1
do i = 2, 119, 13
level(i) = 2
end do
do i = 3, 120, 13
level(i) = 3
level(i+1) = 3
level(i+2) = 3
end do
do i = 6, 123, 13
level(i) = 4
level(i+1) = 4
level(i+2) = 4
level(i+3) = 4
level(i+4) = 4
level(i+5) = 4
level(i+6) = 4
level(i+7) = 4
level(i+8) = 4
end do
do i = 132, 137
level(i) = 0
end do
c connectivity of axon
nnum(132) = 2
nnum(133) = 3
nnum(134) = 3
nnum(136) = 3
nnum(135) = 1
nnum(137) = 1
neigh(132,1) = 1
neigh(132,2) = 133
neigh(133,1) = 132
neigh(133,2) = 134
neigh(133,3) = 136
neigh(134,1) = 133
neigh(134,2) = 135
neigh(134,3) = 136
neigh(136,1) = 133
neigh(136,2) = 134
neigh(136,3) = 137
neigh(135,1) = 134
neigh(137,1) = 136
c connectivity of SD part
nnum(1) = 11
neigh(1,1) = 132
neigh(1,2) = 2
neigh(1,3) = 15
neigh(1,4) = 28
neigh(1,5) = 41
neigh(1,6) = 54
neigh(1,7) = 67
neigh(1,8) = 80
neigh(1,9) = 93
neigh(1,10) = 106
neigh(1,11) = 119
do i = 2, 119, 13
nnum(i) = 4
neigh(i,1) = 1
neigh(i,2) = i + 1
neigh(i,3) = i + 2
neigh(i,4) = i + 3
end do
do i = 3, 120, 13
nnum(i) = 4
neigh(i,1) = i - 1
neigh(i,2) = i + 3
neigh(i,3) = i + 4
neigh(i,4) = i + 5
end do
do i = 4, 121, 13
nnum(i) = 4
neigh(i,1) = i - 2
neigh(i,2) = i + 5
neigh(i,3) = i + 6
neigh(i,4) = i + 7
end do
do i = 5, 122, 13
nnum(i) = 4
neigh(i,1) = i - 3
neigh(i,2) = i + 7
neigh(i,3) = i + 8
neigh(i,4) = i + 9
end do
do i = 6, 123, 13
nnum(i) = 3
neigh(i,1) = i - 3
neigh(i,2) = i + 1
neigh(i,3) = i + 2
end do
do i = 7, 124, 13
nnum(i) = 3
neigh(i,1) = i - 4
neigh(i,2) = i - 1
neigh(i,3) = i + 1
end do
do i = 8, 125, 13
nnum(i) = 3
neigh(i,1) = i - 5
neigh(i,2) = i - 2
neigh(i,3) = i - 1
end do
do i = 9, 126, 13
nnum(i) = 3
neigh(i,1) = i - 5
neigh(i,2) = i + 1
neigh(i,3) = i + 2
end do
do i = 10, 127, 13
nnum(i) = 3
neigh(i,1) = i - 6
neigh(i,2) = i - 1
neigh(i,3) = i + 1
end do
do i = 11, 128, 13
nnum(i) = 3
neigh(i,1) = i - 7
neigh(i,2) = i - 2
neigh(i,3) = i - 1
end do
do i = 12, 129, 13
nnum(i) = 3
neigh(i,1) = i - 7
neigh(i,2) = i + 1
neigh(i,3) = i + 2
end do
do i = 13, 130, 13
nnum(i) = 3
neigh(i,1) = i - 8
neigh(i,2) = i - 1
neigh(i,3) = i + 1
end do
do i = 14, 131, 13
nnum(i) = 3
neigh(i,1) = i - 9
neigh(i,2) = i - 2
neigh(i,3) = i - 1
end do
DO 332, I = 1, 137
c WRITE(6,3330) I, NEIGH(I,1),NEIGH(I,2),NEIGH(I,3),NEIGH(I,4),
c X NEIGH(I,5),NEIGH(I,6),NEIGH(I,7),NEIGH(I,8),NEIGH(I,9),
c X NEIGH(I,10),NEIGH(I,11)
3330 FORMAT(2X,12I5)
332 CONTINUE
DO 858, I = 1, 137
DO 858, J = 1, NNUM(I)
K = NEIGH(I,J)
IT = 0
DO 859, L = 1, NNUM(K)
IF (NEIGH(K,L).EQ.I) IT = 1
859 CONTINUE
IF (IT.EQ.0) THEN
c WRITE(6,8591) I, K
8591 FORMAT(' ASYMMETRY IN NEIGH MATRIX ',I4,I4)
STOP
ENDIF
858 CONTINUE
c length and radius of axonal compartments
do i = 132, 137
len(i) = 50.d0
end do
rad(132) = 0.80d0
rad(133) = 0.7d0
do i = 134, 137
rad(i) = 0.5d0
end do
c length and radius of SD compartments
len(1) = 42.d0
rad(1) = 10.d0
do i = 2, 119, 13
len(i) = 20.d0
end do
do i = 3, 131
if (level(i).ge.3) len(i) = 57.5d0
end do
do i = 2, 131
if (level(i).eq.2) then
rad(i) = 0.73d0
else if (level(i).eq.3) then
rad(i) = 0.8d0 * 0.73d0
else
rad(i) = 0.6d0 * 0.73d0
endif
end do
c WRITE(6,919)
919 FORMAT('COMPART.',' LEVEL ',' RADIUS ',' LENGTH(MU)')
c DO 920, I = 1, 137
c920 WRITE(6,921) I, LEVEL(I), RAD(I), LEN(I)
921 FORMAT(I3,5X,I2,3X,F6.2,1X,F6.1,2X,F4.3)
DO 120, I = 1, 137
AREA(I) = 2.d0 * PI * RAD(I) * LEN(I)
C NO CORRECTION FOR CONTRIBUTION OF SPINES TO AREA
K = LEVEL(I)
C(I) = CDENS * AREA(I) * (1.D-8)
if (k.ge.1) then
GL(I) = (1.D-2) * AREA(I) / RM_SD
else
GL(I) = (1.D-2) * AREA(I) / RM_AXON
endif
GNAF(I) = GNAF_DENS(K) * AREA(I) * (1.D-5)
GNAP(I) = GNAP_DENS(K) * AREA(I) * (1.D-5)
GCAT(I) = GCAT_DENS(K) * AREA(I) * (1.D-5)
GKDR(I) = GKDR_DENS(K) * AREA(I) * (1.D-5)
GKA(I) = GKA_DENS(K) * AREA(I) * (1.D-5)
GKC(I) = GKC_DENS(K) * AREA(I) * (1.D-5)
GKAHP(I) = GKAHP_DENS(K) * AREA(I) * (1.D-5)
GCAL(I) = GCAL_DENS(K) * AREA(I) * (1.D-5)
GK2(I) = GK2_DENS(K) * AREA(I) * (1.D-5)
GKM(I) = GKM_DENS(K) * AREA(I) * (1.D-5)
GAR(I) = GAR_DENS(K) * AREA(I) * (1.D-5)
c above conductances should be in microS
120 continue
Z = 0.d0
DO 1019, I = 2, 131
Z = Z + AREA(I)
1019 CONTINUE
c WRITE(6,1020) Z
1020 FORMAT(2X,' TOTAL DENDRITIC AREA ',F7.0)
DO 140, I = 1, numcomp
DO 140, K = 1, NNUM(I)
J = NEIGH(I,K)
if (level(i).eq.0) then
RI = RI_AXON
else
RI = RI_SD
endif
GAM1 =100.d0 * PI * RAD(I) * RAD(I) / ( RI * LEN(I) )
if (level(j).eq.0) then
RI = RI_AXON
else
RI = RI_SD
endif
GAM2 =100.d0 * PI * RAD(J) * RAD(J) / ( RI * LEN(J) )
GAM(I,J) = 2.d0/( (1.d0/GAM1) + (1.d0/GAM2) )
140 CONTINUE
c gam computed in microS
DO 299, I = 1, numcomp
299 BETCHI(I) = .05d0
BETCHI( 1) = .02d0
DO 300, I = 1, numcomp
c300 D(I) = 2.D-4
300 D(I) = 5.D-4
DO 301, I = 1, numcomp
IF (LEVEL(I).EQ.1) D(I) = 1.D-3
301 CONTINUE
C NOTE NOTE NOTE (DIFFERENT FROM SWONG)
DO 160, I = 1, numcomp
160 CAFOR(I) = 5200.d0 / (AREA(I) * D(I))
C NOTE CORRECTION
do 200, i = 1, numcomp
200 C(I) = 1000.d0 * C(I)
C TO GO FROM MICROF TO NF.
DO 909, I = 1, numcomp
JACOB(I,I) = - GL(I)
DO 909, J = 1, NNUM(I)
K = NEIGH(I,J)
IF (I.EQ.K) THEN
c WRITE(6,510) I
510 FORMAT(' UNEXPECTED SYMMETRY IN NEIGH ',I4)
ENDIF
JACOB(I,K) = GAM(I,K)
JACOB(I,I) = JACOB(I,I) - GAM(I,K)
909 CONTINUE
c 15 Jan. 2001: make correction for c(i)
do i = 1, numcomp
do j = 1, numcomp
jacob(i,j) = jacob(i,j) / c(i)
end do
end do
DO 500, I = 1, numcomp
c WRITE (6,501) I,C(I)
501 FORMAT(1X,I3,' C(I) = ',F7.4)
500 CONTINUE
END