A model of slow motor unit (Kim, 2017)

 Download zip file 
Help downloading and running models
Accession:235769
Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem.
Reference:
1 . Kim H (2017) Muscle length-dependent contribution of motoneuron Cav1.3 channels to force production in model slow motor unit. J Appl Physiol (1985) 123:88-105 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell; Skeletal muscle cell;
Channel(s): I Calcium; I Potassium; I Sodium; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s): Cav1.3 CACNA1D;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites;
Implementer(s): Kim, Hojeong [hojeong.kim03 at gmail.com];
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Sodium; I Calcium; I Potassium; I_AHP;
/
Kim2017
fig4
Ca_conc.mod *
CaL.mod *
CaN.mod *
KCa.mod *
KDr.mod *
module1_2.mod *
module3.mod *
Naf.mod *
Nap.mod *
RampIClamp.mod *
Xm.mod *
add_hil_is.hoc *
add_muscle_unit.hoc *
add_pics_istim.hoc
CaL_PICs.hoc *
fig4.ses
fixnseg.hoc *
mem_mechanism_acti.hoc *
mem_mechanism_muscle.hoc *
mem_mechanism_pass.hoc *
motor_unit.hoc
v_e_moto6_export.hoc *
Xm.hoc *
                            
TITLE Calcium dynamics and cross-bridge formation
 
UNITS { }

NEURON {
	SUFFIX CaSP
	
	::module 1::
	RANGE k1, k2, k3, k4, k5, k6, k, k5i, k6i 
	RANGE Umax, Rmax, t1, t2, R, vth
	RANGE phi0, phi1, phi2, phi3, phi4

	::module 2::
	RANGE c1, c2, c3, c4, c5 
	RANGE AMinf, AMtau, SF_AM
	RANGE acm, alpha, alpha1, alpha2, alpha3, beta, gamma

	::simulation::
	RANGE spk_index, t_axon 
	USEION mg WRITE mgi VALENCE 2
	USEION cl READ cli
}

PARAMETER {
	::module 1::
	k1 = 3000		: M-1*ms-1
	k2 = 3			: ms-1
	k3 = 400		: M-1*ms-1
	k4 = 1			: ms-1
	k5i = 4e5		: M-1*ms-1
	k6i = 150		: ms-1
	k = 850			: M-1
	SF_AM = 5
	Rmax = 10		: ms-1
	Umax = 2000		: M-1*ms-1
	t1 = 3			: ms
	t2 = 25			: ms
	phi1 = 0.03
	phi2 = 1.23
	phi3 = 0.01		
	phi4 = 1.08		
	CS0 = 0.03     	:[M]
	B0 = 0.00043	:[M]
	T0 = 0.00007 	:[M]
	
	::module 2::
	c1 = 0.128 		 
	c2 = 0.093		 
	c3 = 61.206	 
	c4 = -13.116	 
	c5 = 5.095		
	alpha = 2
	alpha1 = 4.77
	alpha2 = 400
	alpha3 = 160
	beta = 0.47
	gamma = 0.001

	::simulation::
	vth = -40		
	spk_index = 0	
	t_axon = 0.01	
}

STATE {
	CaSR			
	CaSRCS			
	Ca				
	CaB				
	CaT				
	AM				
	mgi				
}

ASSIGNED {
	v 	(mV)
	R
	t_shift 		
	R_On 			
	Spike_On 		
	k5
	k6
	AMinf
	AMtau
	cli				
	spk[1000] 		
	xm[2] 			
	vm			    
	acm				
}

BREAKPOINT { LOCAL i, temp_R
	
	SPK_DETECT (v, t) 
	CaR (CaSR, t)

	SOLVE state METHOD cnexp
	
	xm[0]=xm[1]
	xm[1]=cli
	
	vm = (xm[1]-xm[0])/(dt*10^-3)
	
	::isometric and isokinetic condition::
	mgi = AM^alpha
}

DERIVATIVE state {
	rate (cli, CaT, AM, t)
	
	CaSR' = -k1*CS0*CaSR + (k1*CaSR+k2)*CaSRCS - R + U(Ca)
	CaSRCS' = k1*CS0*CaSR - (k1*CaSR+k2)*CaSRCS
	
	Ca' = - k5*T0*Ca + (k5*Ca+k6)*CaT - k3*B0*Ca + (k3*Ca+k4)*CaB + R - U(Ca)
	CaB' = k3*B0*Ca - (k3*Ca+k4)*CaB
	CaT' = k5*T0*Ca - (k5*Ca+k6)*CaT
	
	AM' = (AMinf -AM)/AMtau
	mgi' = 0
}

PROCEDURE SPK_DETECT (v (mv), t (ms)) {
	if (Spike_On == 0 && v > vth) {
	Spike_On = 1
	spk[spk_index] = t + t_axon
	spk_index = spk_index + 1
	R_On = 1
	} else if (v < vth) {
	Spike_On = 0
	}
}

FUNCTION U (x) {
	if (x >= 0) {U = Umax*(x^2*k^2/(1+x*k+x^2*k^2))^2}
	else {U = 0}
}

FUNCTION phi (x) {
	if (x <= -8) {phi = phi1*x + phi2}
	else {phi = phi3*x + phi4}
}

PROCEDURE CaR (CaSR (M), t (ms)) { LOCAL i, temp_R  ::Ca_Release::
	if (R_On == 1) {
		FROM i=0 TO spk_index-1 {
			temp_R = temp_R + CaSR*Rmax*(1-exp(-(t-spk[i])/t1))*exp(-(t-spk[i])/t2)
		}
		R = temp_R
		temp_R = 0
	}
	else {R = 0}
}

PROCEDURE rate (cli (M), CaT (M), AM (M), t(ms)) {
	k5 = phi(cli)*k5i
	k6 = k6i/(1 + SF_AM*AM)
	AMinf = 0.5*(1+tanh(((CaT/T0)-c1)/c2))
	AMtau = c3/(cosh(((CaT/T0)-c4)/(2*c5)))
}

INITIAL {LOCAL i
	CaSR = 0.0025  		:[M]
	CaSRCS = 0			:[M]
	Ca = 1e-10			:[M] 
	CaB = 0				:[M]
	CaT = 0				:[M]
	AM = 0				:[M]
	mgi = 0
		
	FROM i = 0 TO 999 {
	spk[i] = 0
	}
	FROM i = 0 TO 1 {
	xm[i] = 0
	}
	spk_index = 0
	R_On = 0
}

Loading data, please wait...