Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)

 Download zip file 
Help downloading and running models
Accession:236310
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
Reference:
1 . Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI (2018) Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 13:e0200626 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum spiny neuron;
Channel(s):
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Membrane Properties; Electrotonus; Synaptic-input statistic; Huntington's;
Implementer(s):
Search NeuronDB for information about:  AMPA;
/
GoodliffeEtAl2018
Syn
tau_tables
bkkca.mod
cadyn.mod *
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod *
car.mod
cat.mod
kaf.mod
kas.mod
kdr.mod
kir.mod *
krp.mod *
linearIclamp.mod
naf.mod
nap.mod
skkca.mod
stim.mod *
actionPotentialPlayer.hoc *
all_tau_vecs.hoc
analyticFunctions.hoc *
analyze_EPSC.m
aux_procs.hoc
baseline_values.txt
basic_procs.hoc
createFit_WTD1.m
electro_procs.hoc
fixnseg.hoc *
load_scripts.hoc
msp_template.hoc
PFC-V1_AddSynapses.hoc
PFC-V1_AddSynapses_fix.hoc
PFC-V1_AddSynapses_neg.hoc
PFC-V1_AddSynapses_negexp.hoc
plot_seClamp_i.ses
ran_test.hoc
randomepsc.hoc
ranstream.hoc
read_EPSCsims_mdb_alone.m
readcell.hoc
readNRNbin_Vclamp.m
                            
TITLE BK KCA channel for nucleus accumbens model - old version!

: large conductance kca channel

COMMENT Equations from 
		  Shao L.R., Halvorsrud R., Borg-Graham L., Storm J.F. The role
		  of BK-type Ca2_-dependent K+ channels in spike broadening
		  during repetitive firing in rat hippocampal pyramidal cells
		  J.Physiology (1999),521:135-146
		  
		  The Krasnow Institute
		  George Mason University

Copyright	  Maciej Lazarewicz, 2001
		  (mlazarew@gmu.edu)
		  All rights reserved.
ENDCOMMENT

NEURON {
	SUFFIX bkkca
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE  gkbar,ik, q
}

UNITS {
	(molar) = (1/liter)
	(mM)	= (millimolar)
	(S)  	= (siemens)
	(mA) 	= (milliamp)
	(mV) 	= (millivolt)
}

PARAMETER {
	turnOffinact = 1 (1)
    gkbar	= 0.001 (S/cm2)
    q = 0.72
	celsius		 (degC)
	m1half = -10.0 (mV)
	m2half = -65.0 (mV)
	m3half = -44.0 (mV)
	m4half = -20   (mV)
}

ASSIGNED {
        v       (mV)
        cai	(mM)
	ik	(mA/cm2)
	k1	(/ms)
	k2	(/ms)
	k3	(/ms)
	k4	(/ms)
	q10	(1)
	ek 	(mV)
}

STATE { cst ost ist }

BREAKPOINT { 
	SOLVE kin METHOD sparse
	ik = gkbar * ost * ( v - ek ) 
}

INITIAL {
	SOLVE kin STEADYSTATE sparse
}

KINETIC kin {
	rates(v)
	~cst<->ost  (k3,k4)
	~ost<->ist  (k1,0.0)
	~ist<->cst  (k2,0.0)
	CONSERVE cst+ost+ist=1
}

PROCEDURE rates( v(mV)) {
	 k1=alp( 0.1, v,  m1half,   1.0 )
	 k2=alp( 0.1, v, m2half, -10.0 )
	 k3=alpha( 0.001, 1.0, v, m4half, 7.0 ) *1.0e8* ( cai*1.0(/mM) )^3
	 k4=alp( 0.01, v, m3half,  -5.0 )
}

FUNCTION alpha( tmin(ms), tmax(ms), v(mV), vhalf(mV), k(mV) )(/ms){
        alpha = q / ( tmin + 1.0 / ( 1.0 / (tmax-tmin) + exp((v-vhalf)/k)*1.0(/ms) ) )
}

FUNCTION alp( tmin(ms), v(mV), vhalf(mV), k(mV) )(/ms){
        alp = q / ( tmin + exp( (v-vhalf) / k )*1.0(ms) )
}








Loading data, please wait...