Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)

 Download zip file 
Help downloading and running models
Accession:236310
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
Reference:
1 . Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI (2018) Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 13:e0200626 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum spiny neuron;
Channel(s):
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Membrane Properties; Electrotonus; Synaptic-input statistic; Huntington's;
Implementer(s):
Search NeuronDB for information about:  AMPA;
/
GoodliffeEtAl2018
Syn
tau_tables
bkkca.mod
cadyn.mod *
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod *
car.mod
cat.mod
kaf.mod
kas.mod
kdr.mod
kir.mod *
krp.mod *
linearIclamp.mod
naf.mod
nap.mod
skkca.mod
stim.mod *
actionPotentialPlayer.hoc *
all_tau_vecs.hoc
analyticFunctions.hoc *
analyze_EPSC.m
aux_procs.hoc
baseline_values.txt
basic_procs.hoc
createFit_WTD1.m
electro_procs.hoc
fixnseg.hoc *
load_scripts.hoc
msp_template.hoc
PFC-V1_AddSynapses.hoc
PFC-V1_AddSynapses_fix.hoc
PFC-V1_AddSynapses_neg.hoc
PFC-V1_AddSynapses_negexp.hoc
plot_seClamp_i.ses
ran_test.hoc
randomepsc.hoc
ranstream.hoc
read_EPSCsims_mdb_alone.m
readcell.hoc
readNRNbin_Vclamp.m
                            
TITLE KDR (4ap resistant, persistent) current for Evans 2012

COMMENT


Recorded at 22C - corrected to 35C with qfact 3

Jason Moyer 2004 - jtmoyer@seas.upenn.edu

ENDCOMMENT

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
}
 
NEURON {
        SUFFIX kdr
        USEION k READ ek WRITE ik
        RANGE  gkbar, ik
}
 
PARAMETER {
	gkbar   =   0.0191 (S/cm2)

	avhalf = -13		(mV)	: Nisenbaum 1996, Fig 6C
	aslope = -9.09		(mV)	: Nisenbaum 1996, Fig 6C
	ashift = 13.605			(mV)
	bvhalf = -13		(mV)
	bslope = -12.5		(mV)
	bshift = 0.33739			(mV)


 	a = 0.7				: matched to Nisenbaum 1996, figure 9A (with qfact = 1)
 	qfact = 0.36 
}
 
STATE { m }
 
ASSIGNED {
	ek				(mV)
        v 				(mV)
        ik 				(mA/cm2)
        gk				(S/cm2)
        minf 
        alpham
        betam
        taum		(ms)
    }
 
BREAKPOINT {
        SOLVE state METHOD cnexp
        gk = gkbar * m  
        ik = gk * ( v - ek )
}
 

 
INITIAL {
	rates(v)
	
	m = minf
}


DERIVATIVE state { 
        rates(v)
        m' = (minf - m) / (taum/qfact)

}
 
PROCEDURE rates(v (mV)) {  
			alpham=exp((v-avhalf-ashift)/aslope)
			betam=exp((v-bvhalf-bshift)/bslope)
			taum=(0.01*50*betam/(1+alpham))/qfact
			minf=1/(1+alpham)		
}
 
 

Loading data, please wait...