Stochastic layer V pyramidal neuron: interpulse interval coding and noise (Singh & Levy 2017)

 Download zip file 
Help downloading and running models
Accession:237594
Layer V pyramidal neuron with stochastic Na channels. Supports evidence for interpulse interval coding and has very detailed AIS with Nav1.2 and Nav1.6 channels.
Reference:
1 . Singh C, Levy WB (2017) A consensus layer V pyramidal neuron can sustain interpulse-interval coding. PLoS One 12:e0180839 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation;
Implementer(s): Singh, Chandan [chandan_singh at berkeley.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell;
/* ----------------------------------------------------------------
    Define the Axon Geometry
    
    Layer 5 cortical pyramidal cell has a long unmyelinated axon!
    Similar to Mainen et al (Neuron, 1995)
------------------------------------------------------------------*/ 

n_myelin = 14  // number of myelins and nodes
create ais[2],hill,nakeaxon,myelin[2],node[2]  // forward declaration

proc create_axon() {

  create ais[10],hill,nakeaxon,myelin[n_myelin],node[n_myelin]
  
  // Acquire the equivalent diameter of soma
  soma {  equiv_diam = sqrt(area(0.5)*nseg/(4*PI))  }   // "*nseg" is needed !!
  if (numarg()) equiv_diam = $1
  
  // Set axonal diameters
  diamAis=equiv_diam/10
  diamNakeAxon=equiv_diam/12  
  diamMyelin=diamAis*1.
  diamNode=diamAis*0.75    // nodes are thinner than axon

  // Initial segment

hill {                							
    L = 10							
    nseg = 10							
    diam(	0	:	0.25	) = 	6	:	3.8
    diam(	0.25	:	0.5	) = 	3.8	:	2.8
    diam(	0.5	:	0.75	) = 	2.8	:	1.7
    diam(	0.75	:	1	) = 	1.7	:	1.3
  }
				
							
for i=0,9 ais[i] {                 
    L = 5
    nseg = 10
    diam = 1.22
  }

ais[0]	{						
    diam(	0	:	1	) = 	1.7	:	1.5
	}						
							
ais[1]	{						
    diam(	0	:	1	) = 	1.5	:	1.22
	}		  
	
	
  // Unmylined axon
  nakeaxon {                
    L = 400
    nseg = 100
    diam = diamNakeAxon
  }

  // Myelinated axon with nodes of Ranvier
  for i=0,n_myelin-1 {
    myelin[i] {         // myelin element
      nseg = 5
      L = 100
      diam = diamMyelin    
    }
    node[i] {           // nodes of Ranvier
      nseg = 1
      L = 1           
      diam = diamNode     
    }
  }

  // Connecting
  
  soma connect hill(0), axonOnSoma       // dend11 -> soma(0) -> soma(1) -> hill
  hill connect ais[0] (0), 1      // hill -> ais[0]
  for i=0,8 ais[i] {              // ais[0] -> ... -> ais[9]
    connect ais[i+1] (0), 1
  }
  ais[9] connect nakeaxon(0), 1        // ais[9] -> nakeaxon
  nakeaxon connect myelin[0] (0), 1    // nakeaxon -> myelin[0]
  myelin[0] connect node[0](0), 1            // myelin[0] -> node[0]
  for i=1,n_myelin-1  {                    // (myelin[0] node[0]) -> ... -> (myelin[n_myelin] node[n_myelin]) 
      node[i-1] connect myelin[i](0), 1 
      myelin[i] connect node[i](0), 1
  }

}

Loading data, please wait...