Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)

 Download zip file 
Help downloading and running models
Accession:239421
"The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. ..."
Reference:
1 . Masoli S, D'Angelo E (2017) Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 11:278 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Synapse;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): I Potassium; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Bursting;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I K,Ca; I Potassium;
/
Purkinjecell_2017
mod_files
Cav2_1.mod *
Cav3_1.mod *
Cav3_2.mod *
Cav3_3.mod *
cdp5.mod *
HCN1_Angeloetal2007.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv33.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_Gaba_det_vi_alfa1.mod
PURKINJE_Ampa_det_vi.mod
UBC_TRP.mod
                            
TITLE Low threshold calcium current Cerebellum Purkinje Cell Model

COMMENT

Kinetics adapted to fit the Cav3.1 Iftinca et al 2006, Temperature dependence of T-type Calcium channel gating, NEUROSCIENCE

Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum*

*Article available as Open Access

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513

Written by Haroon Anwar, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 2010.
Contact: Haroon Anwar (anwar@oist.jp)

Suffix from CaT3_1 to CaV3_1

ENDCOMMENT


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
        SUFFIX Cav3_1
        USEION ca READ cai, cao WRITE ica VALENCE 2
        RANGE g, pcabar, minf, taum, hinf, tauh
	RANGE ica, m ,h

    }

UNITS {
        (molar) = (1/liter)
        (mV) =  (millivolt)
        (mA) =  (milliamp)
        (mM) =  (millimolar)

}

CONSTANT {
	F = 9.6485e4 (coulombs)
	R = 8.3145 (joule/kelvin)
	q10 = 3
}

PARAMETER {
        v               (mV)
        celsius (degC)
        eca (mV)
	pcabar  = 2.5e-4 (cm/s)
        cai  (mM)           : adjusted for eca=120 mV
	cao  (mM)
	
	v0_m_inf = -52 (mV)
	v0_h_inf = -72 (mV)
	k_m_inf = -5 (mV)
	k_h_inf = 7  (mV)
	
	C_tau_m = 1
	A_tau_m = 1.0
	v0_tau_m1 = -40 (mV)
	v0_tau_m2 = -102 (mV)
	k_tau_m1 = 9 (mV)
	k_tau_m2 = -18 (mV)
	
	C_tau_h = 15
	A_tau_h = 1.0
	v0_tau_h1 = -32 (mV)
	k_tau_h1 = 7 (mV)
	
    }
    

STATE {
        m h
}

ASSIGNED {
        ica     (mA/cm2)
	g        (coulombs/cm3) 
        minf
        taum   (ms)
        hinf
        tauh   (ms)
	T (kelvin)
	E (volt)
	zeta
	qt
}

BREAKPOINT {
	SOLVE castate METHOD cnexp 

        ica = (1e3) *pcabar*m*m *h * g
}

DERIVATIVE castate {
        evaluate_fct(v)

        m' = (minf - m) / taum
        h' = (hinf - h) / tauh
}

FUNCTION ghk( v (mV), ci (mM), co (mM), z )  (coulombs/cm3) {
    E = (1e-3) * v
      zeta = (z*F*E)/(R*T)


    if ( fabs(1-exp(-zeta)) < 1e-6 ) {
        ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2)
    } else {
        ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta))
    }
}


UNITSOFF
INITIAL {
	
	T = kelvinfkt (celsius)

        evaluate_fct(v)
        m = minf
        h = hinf
	qt = q10^((celsius-37 (degC))/10 (degC))
}

PROCEDURE evaluate_fct(v(mV)) { 

        minf = 1.0 / ( 1 + exp((v  - v0_m_inf)/k_m_inf) )
        hinf = 1.0 / ( 1 + exp((v - v0_h_inf)/k_h_inf) )
        if (v<=-90) {
	taum = 1
	} else {
	taum = ( C_tau_m + A_tau_m / (exp((v - v0_tau_m1)/ k_tau_m1) + exp((v - v0_tau_m2)/k_tau_m2))) / qt
	}
	tauh = ( C_tau_h + A_tau_h / exp((v - v0_tau_h1)/k_tau_h1) ) / qt
	g = ghk(v, cai, cao, 2)
}

FUNCTION kelvinfkt( t (degC) )  (kelvin) {
    kelvinfkt = 273.19 + t
}

UNITSON

Loading data, please wait...