ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/243446.

Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)

 Download zip file 
Help downloading and running models
Accession:243446
"Climbing fibers (CFs) provide instructive signals driving cerebellar learning, but mechanisms causing the variable CF responses in Purkinje cells (PCs) are not fully understood. Using a new experimentally validated PC model, we unveil the ionic mechanisms underlying CF-evoked distinct spike waveforms on different parts of the PC. We demonstrate that voltage can gate both the amplitude and the spatial range of CF-evoked Ca2+ influx by the availability of K+ currents. ... The voltage- and branch-specific CF responses can increase dendritic computational capacity and enable PCs to actively integrate CF signals."
Reference:
1 . Zang Y, Dieudonné S, De Schutter E (2018) Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell Reports 24(6):1536-1549 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): Ca pump; I K; I K,Ca; I Na,p; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Active Dendrites; Synaptic Integration; Dendritic Action Potentials; Detailed Neuronal Models;
Implementer(s): Zang, Yunliang ;
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I Na,p; I K; I h; I K,Ca; Ca pump;
/
purkinje_pub
mod
BK_Slow.mod *
CaP.mod *
capmax.mod *
CaT.mod *
cdp_AIS.mod *
cdp_smooth.mod *
cdp_soma.mod *
cdp_spiny.mod *
distr.mod
ih.mod *
Kv1.mod *
kv3.mod *
kv4f.mod *
kv4s.mod *
mslo.mod *
nap.mod *
narsg.mod *
peak.mod *
pkjlk.mod *
SK2.mod *
syn2.mod *
                            
: nap.mod is a persistent Na+ current from
: Baker 2005, parameter assignments and formula's from page 854

NEURON {
	SUFFIX nap
    USEION na READ ena WRITE ina
	RANGE gbar,ina
:    THREADSAFE
}

UNITS {
	(S) = (siemens)
	(mV) = (millivolts)
	(mA) = (milliamp)
}
CONSTANT {
q10  =2.7
}
PARAMETER {
	gbar = 2.2630e-04 :3.7(nS)/1635(um^2)
:	ena= 65 (mV)

	A_amp = 17.235 (/ms) : A for alpha m persis
	B_amp = 27.58 (mV)
	C_amp = -11.47 (mV)

	A_bmp = 17.235 (/ms) : A for beta m persis
	B_bmp = 86.2 (mV)
	C_bmp = 19.8 (mV)
}

ASSIGNED {
	v	(mV) : NEURON provides this
	i	(mA/cm2)
	g	(S/cm2)
	tau_m	(ms)
	minf
	hinf
	ena
	ina
	qt
}

STATE { m h }

BREAKPOINT {
	SOLVE states METHOD cnexp
	g = gbar * m^3
	ina = g * (v-ena)
}

INITIAL {
qt = q10^((celsius-22 (degC))/10 (degC))
	: assume that equilibrium has been reached
	m = alpham(v)/(alpham(v)+betam(v))
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m)/tau_m
}

FUNCTION alpham(Vm (mV)) (/ms) {
	alpham=A_amp/(1+exp((Vm+B_amp)/C_amp))
}

FUNCTION betam(Vm (mV)) (/ms) {
	betam=A_bmp/(1+exp((Vm+B_bmp)/C_bmp))
}

FUNCTION rates(Vm (mV)) (/ms) {
	tau_m = 1.0 / (alpham(Vm) + betam(Vm))/qt
	minf = 1.0/(1+exp(-(Vm+66)/5))
}













Loading data, please wait...