Compartmental differences in cAMP signaling pathways in hippocam. CA1 pyr. cells (Luczak et al 2017)

 Download zip file 
Help downloading and running models
Accession:245529
Model of cAMP signaling pathways in hippocampal CA1 pyramidal neurons investigate mechanisms underlying the experimentally observed difference in cAMP and PKA FRET between proximal and distal dendrites. Simulations show that compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient.
Reference:
1 . Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N (2017) Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during ß-adrenergic receptor activation. Neurobiol Learn Mem 138:10-20 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Molecular Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): Adrenergic;
Gene(s):
Transmitter(s): Norephinephrine;
Simulation Environment:
Model Concept(s): G-protein coupled; Influence of Dendritic Geometry; Reaction-diffusion;
Implementer(s): Blackwell, Avrama [avrama at gmu.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Adrenergic; Norephinephrine;
#Python version, i.e. alternative of NRDpostAB
#in python, type ARGS="par1 par2,mol1 mol2,subdir/fileroot,sstart ssend" then execfile('neurord_analysis.py')
#DO NOT PUT ANY SPACES NEXT TO THE COMMAS, DO NOT USE TABS
#e.g. ARGS="Ca GaqGTP,Ca GaqGTP Ip3,../Repo/plc/Model_PLCassay,15 20"
#from outside python, type python neurord_analysis [par1 par2] [mol1 mol2]
#Assumes that molecule outputs are integers, and the hypens used ONLY for parameters
#Can process multiple parameter variations, but all files must use same morphology, and meshfile.  
#It will provide region averages (each spine, dendrite submembrane, cytosol) and if spatialaverage=1,
#will calculate an average of n segments along the dendrite, 
#or whatever structure name is specified in dend variable

import os
import numpy as np
from matplotlib import pyplot
from string import *
import sys  
import glob
import header_parse as hparse
import plot_utils as pu

#######################################################
#indicate the name of the injection spines if you want to exclude them
fake = 'FAKE'
#indicate the name of submembrane region for totaling molecules that are exclusively submembrane
#only relevant for tot_species calculation. this should be name of structure concatenated with sub
submembname='sub'
#Spatial average (=1 to process) only includes the structure "dend", and subdivides into bins:
spatialaverage=0
dend="dend"
bins=10
#how much info to print
prnvox=1
prnheader=0
prninfo=0
showss=0
#outputavg determines whether output files are written
outputavg=0
##change these endings depending on whether using neurord3.x:
meshend="*mesh.txt.out"
concend='conc.txt.out'
## or neurord2.x (uncomment these)
#meshend="*mesh.txt"
#concend='conc.txt'
#Example of how to total some molecule forms; turn off with tot_species={}
#tot_species={
#        "PKAtot":["PKA", "PKAcAMP2", "PKAcAMP4", "PKAr"],
#        "D1Rtot":["D1R","DaD1R", "GsD1R","DaD1RGs", "pDaD1RGs", "PKAcDaD1RGs"],
#        "pde10tot":["PDE10","pPDE10", "PDE10cAMP","pPDE10cAMP","PKAcPDE10", "PKAcPDE10cAMP"],
#        "Gitot":["Giabg","AChm4RGi","Gim4R", "GaiGTP", "GaiGDP", "ACGai", "ACGasGai", "ACGasGaiATP"],
#        "m4Rtot":["AChm4RGi","Gim4R", "m4R", "AChm4R"]}
tot_species={}

Avogadro=6.023e14 #to convert to nanoMoles
mol_per_nM_u3=Avogadro*1e-15

try:
	args = ARGS.split(",")
	print "ARGS =", ARGS, "commandline=", args
 	do_exit = False
except NameError: #NameError refers to an undefined variable (in this case ARGS)
	args = sys.argv[1:]
	print "commandline =", args
	do_exit = True

pattern=args[2]+'*'
if len(args[0]):
        params=args[0].split(" ")
        for par in params:
                pattern=pattern+'-'+par+'*'
else:
        params=[]
whole_pattern=pattern+concend
#A single mesh file means that all files in your list must use the same morphology
meshname=pattern.split('-')[0]+meshend
lastslash=rfind(pattern,'/')
subdir=pattern[0:lastslash]

###################################################

def sortorder(ftuple):
    ans = ftuple[1]
    #print 'sort', ftuple, '->', ans
    return ans

fnames = glob.glob(whole_pattern)
print "NUM FILES:", len(fnames), "CURRENT DIRECTORY:", os.getcwd(), ", Target directory:", subdir
if len(fnames)==0:
    print "MESHFILES:", os.listdir(subdir+'/'+meshend)
ss_tot=np.zeros((len(fnames),len(tot_species.keys())))
parlist=[]
if len(args[0]):
        ftuples,parlist=pu.file_tuple(fnames,params)
        ftuples = sorted(ftuples, key=lambda x:x[1])
else:
        ftuples=[(fnames[0],1)]

#First, read mesh file to determine how many voxels
if len(fnames)>0:
        meshfile=glob.glob(meshname)[0]
else:
        print "********** no meshfile **************"
maxvols,vox_volume,xloc,yloc,TotVol,deltaY=hparse.read_mesh(meshfile)

#prepare to plot stuff (instead of calculating averages)
#plot_molecules determines what is plotted
plot_molecules=args[1].split(' ')
fig,axes,col_inc,scale,minpar=pu.plot_setup(plot_molecules,parlist,params)
fig.suptitle(pattern.split('/')[-1])
ss=np.zeros((len(fnames),len(plot_molecules)))
slope=np.zeros((len(fnames),len(plot_molecules)))
peaktime=np.zeros((len(fnames),len(plot_molecules)))
baseline=np.zeros((len(fnames),len(plot_molecules)))
peakval=np.zeros((len(fnames),len(plot_molecules)))
lowval=np.zeros((len(fnames),len(plot_molecules)))

parval=[]
for fnum,ftuple in enumerate(ftuples):
    fname=ftuple[0]
    parval.append(ftuple[1])
    if fnum == 0:
        f = open(fname, 'r+')
        #parse the header to determine identity/structure of voxels and molecules
        data=f.readline()
        if (prnheader==1):
            print "header",data
        else:
            print "header not printed"
        #UPDATE maxvols, or number of voxels in this function
        regionID,structType,molecules,volnums,maxvols=hparse.header_parse(data,maxvols,prninfo)
        print "in neurord_analysis: vox#", volnums
        print "      regions",regionID
        print "      structures",structType
        print "      mols",molecules
        f.close()
        #all voxels should be read in now with labels
        #extract number of unique regions (e.g. dendrite, or sa1[0]), 
        #and create list of subvolumes which contribute to that region
        if maxvols>1:
                region_list,region_vox,region_col,region_struct_list,region_struct_vox,region_struct_col=hparse.subvol_list(structType,regionID,volnums,fake)
                RegVol=hparse.region_volume(region_list,region_vox,vox_volume,prnvox)
                RegStructVol=hparse.region_volume(region_struct_list,region_struct_vox,vox_volume,prnvox)
                submembVol=0
                for region in region_list:
                        smname=region+submembname
                        if smname in region_struct_list:
                                submembVol+=RegStructVol[region_struct_list.index(smname)]
                #
                if spatialaverage:
                        hparse.spatial_average(xloc,yloc,bins,regionID,structType,volnums)
     #
    #Lastly, read in the data and output separate files of region averages
    #Can do all molecules in a list without a batch file
    alldata=np.loadtxt(fname,skiprows=1)
    time=alldata[:,0]/1000
    dt=time[1]
    data=alldata[:,1:alldata.shape[1]]
    del alldata
    #the above eliminates the time column from the data, so that e.g., column 0 = voxel 0
    #
    #reshape the data to create a separate dimension for each molecule
    rows=data.shape[0]
    arrays=len(molecules)
    if maxvols*arrays == data.shape[1]:
            molecule_array=np.reshape(data, (rows,arrays,maxvols))
            del data
    else:
            print "UH OH! voxels:", maxvols, "molecules:", len(molecules), "columns:", data.shape[1]
    plot_array=np.zeros((rows,len(plot_molecules)))
    sstart=int(float(args[3].split(" ")[0])/dt)
    ssend=int(float(args[3].split(" ")[1])/dt)

    ##now, calculate various averages such as soma and dend, subm vs cyt, 
    #use the above lists and volume of each region, and each region-structure
    #
    if maxvols>1:
        data=np.zeros((rows,maxvols))
        for imol in range(arrays):
           if molecules[imol] in plot_molecules:
                data=molecule_array[:,imol,:]
                RegionMeans=np.zeros((len(time),len(region_list)))
                header='#time'       #Header for output file
                for itime in range(len(time)):
                        for j in range(len(region_list)):
                                for k in region_col[j]:
                                        RegionMeans[itime,j]+=data[itime,k]
                #sum the molecules of the voxels in the structure, divide by Avogadro and volume
                #
                for j in range(len(region_list)):
                        RegionMeans[:,j]/=(RegVol[j]*mol_per_nM_u3)
                        header=header+' '+molecules[imol]+region_list[j]       #Header for output file
                #
                #Repeat for regionStructures and overall mean
                RegionStructMeans=np.zeros((len(time),len(region_struct_list)))
                OverallMean=np.zeros(len(time))
                #
                for itime in range(len(time)):
                        for j in range(len(region_struct_list)):
                                for k in region_struct_col[j]:
                                        RegionStructMeans[itime,j]+=data[itime,k]
                        for k in range(maxvols):
                                OverallMean[itime]+=data[itime,k]
                #
                for j in range(len(region_struct_list)):
                        RegionStructMeans[:,j]/=(RegStructVol[j]*mol_per_nM_u3)
                        header=header+' '+molecules[imol]+region_struct_list[j]        #Header for output file
                #
                if (data[:,1:-1].all==0):
                        OverallMean[:]/=(submembVol*mol_per_nM_u3)
                else:
                        OverallMean[:]/=(TotVol*mol_per_nM_u3)
                header=header+' '+molecules[imol]+'AvgTot\n'
                #
                if molecules[imol] in plot_molecules:
                        plot_index=plot_molecules.index(molecules[imol])
                        plot_array[:,plot_index]=OverallMean
                        ss[fnum,plot_index]=plot_array[sstart:ssend,plot_index].mean()
                #
                #Repeat for spatial averages if specified
                if spatialaverage:
                        SpatialMeans=np.zeros((len(time),bins))
                        for itime in range(len(time)):
                                for j in range(bins):
                                        for k in bincolumns[j]:
                                                SpatialMeans[itime,j]+=data[itime,k]
                        for j in range(bins):
                                print "j, vol=", j, SpatialVol[j]
                                if (SpatialVol[j] != 0):
                                        SpatialMeans[:,j]/=(SpatialVol[j]*mol_per_nM_u3)
                                print SpatialMeans[1:10,j]
                #
                #write averages to separate files
                if outputavg:
                        outfname=fname[0:-8]+molecules[imol]+'_avg.txt'
                        if molecules[imol] in plot_molecules:
                                print 'output file: ', outfname
                        outdata=np.column_stack((time,RegionMeans,RegionStructMeans,OverallMean))
                        f=open(outfname, 'w')
                        f.write(header)
                        np.savetxt(f, outdata, fmt='%.4f', delimiter=' ')
                        f.close()
                #
                #write space
                if spatialaverage:
                        outnamespace=fname[0:-8]+'-'+molecules[imol]+'_space.txt'
                        outdata=np.column_stack((time,SpatialMeans))
                        f=open(outnamespace, 'w')
                        f.write(header+'\n')
                        np.savetxt(f, outdata, fmt='%.4f', delimiter=' ')
                        f.close()
    else:
        #no processing needed if only a single voxel.  Just extract, calculate ss, and plot specified molecules
        #0 in 3 index of molecule_array indicates that for 1 voxel structures 0th array has total
        for imol,mol in enumerate(plot_molecules):
                plot_array[:,imol]=molecule_array[:,molecules.index(mol),0]/TotVol/mol_per_nM_u3
                ss[fnum,imol]=plot_array[int(sstart/time[1]):int(ssend/time[1]),imol].mean()
    #
    #in both cases (single voxel and multi-voxel):
    #total some molecule forms - specified by hand above for now
    for imol,mol in enumerate(tot_species.keys()):
           for subspecies in tot_species[mol]:
                   mol_sum=molecule_array[0,molecules.index(subspecies),:].sum()
                   #print imol,mol,subspecies,molecule_array[0,molecules.index(subspecies),:],mol_sum
                   ss_tot[fnum,imol]+=mol_sum/TotVol/mol_per_nM_u3
           print imol,mol,ss_tot[fnum,imol],"nM, or in picoSD:", ss_tot[fnum,imol]*(TotVol/submembVol)*deltaY[0]
    #after main processing, extract a few characteristics of molecule trajectory
    #
    print params, parval[fnum]
    print "      molecule  baseline  peakval  ptime   slope     min     ratio"
    for imol,mol in enumerate(plot_molecules):
        baseline[fnum,imol]=plot_array[sstart:ssend,imol].mean()
        peakpt=plot_array[ssend:,imol].argmax()+ssend
        peaktime[fnum,imol]=peakpt*dt
        peakval[fnum,imol]=plot_array[peakpt-10:peakpt+10,imol].mean()
        lowpt=plot_array[ssend:,imol].argmin()+ssend
        lowval[fnum,imol]=plot_array[lowpt-10:lowpt+10,imol].mean()
        begin_slopeval=0.2*(peakval[fnum,imol]-baseline[fnum,imol])+baseline[fnum,imol]
        end_slopeval=0.8*(peakval[fnum,imol]-baseline[fnum,imol])+baseline[fnum,imol]
        exceedsthresh=np.where(plot_array[ssend:,imol]>begin_slopeval)
        begin_slopept=0
        end_slopept=0
        found=0
        if len(exceedsthresh[0]):
                begin_slopept=np.min(exceedsthresh)+ssend
                found=1
                exceedsthresh=np.where(plot_array[begin_slopept:,imol]>end_slopeval)
                if len(exceedsthresh):
                        end_slopept=np.min(exceedsthresh)+begin_slopept
                else:
                        found=0
        if found and len(plot_array[begin_slopept:end_slopept,imol])>1:
                slope[fnum,imol]=(peakval[fnum,imol]-baseline[fnum,imol])/((end_slopept-begin_slopept)*dt)
        else:
                slope[fnum,imol]=-9999
        print mol.rjust(14),"%8.2f" % baseline[fnum,imol],"%8.2f" %peakval[fnum,imol],
        print "%8.2f" % peaktime[fnum,imol], "%8.3f" %slope[fnum,imol],  
        print "%8.2f" %lowval[fnum,imol], "%8.2f" %(peakval[fnum,imol]/baseline[fnum,imol])
    #
    #Now plot some of these molcules, either single voxel or overall average if multi-voxel
    #
    pu.plottrace(plot_molecules,time,plot_array,parval[fnum],axes,fig,col_inc,scale,minpar)
    #
#then plot the steady state versus parameter value for each molecule
if len(params)>1:
        print np.column_stack((parval,ss))
        xval=np.zeros(len(parval))
        for i,pv in enumerate(parval):
                if len(parlist[0])>len(parlist[1]):
                        xval[i]=pv[0]
                else:
                        xval[i]=pv[1]
        if showss:
                pu.plotss(plot_molecules,xval,ss)
else:
    if showss:
        #also plot the totaled molecule forms
        if len(tot_species.keys()):
                pu.plotss(plot_molecules+tot_species.keys(),parval,np.hstack((ss,ss_tot)))
        else:
                pu.plotss(plot_molecules,parval,ss)


Loading data, please wait...