Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)

 Download zip file 
Help downloading and running models
Accession:249705
Our model was built on a reconstructed Layer 5 pyramidal neuron of the rat medial prefrontal cortex, and constrained by 4 sets of experimental data: (i) voltage waveforms obtained at the site of the glutamatergic input in distal basal dendrite, including initial sodium spikelet, fast rise, plateau phase and abrupt collapse of the plateau; (ii) a family of voltage traces describing dendritic membrane responses to gradually increasing intensity of glutamatergic stimulation; (iii) voltage waveforms of backpropagating action potentials in basal dendrites (Antic, 2003); and (iv) the change of backpropagating action potential amplitude in response to drugs that block Na+ or K+ channels (Acker and Antic, 2009). Both, synaptic AMPA/NMDA and extrasynaptic NMDA inputs were placed on basal dendrites to model the induction of local regenerative potentials termed "glutamate-mediated dendritic plateau potentials". The active properties of the cell were tuned to match the voltage waveform, amplitude and duration of experimentally observed plateau potentials. The effects of input location, receptor conductance, channel properties and membrane time constant during plateau were explored. The new model predicted that during dendritic plateau potential the somatic membrane time constant is reduced. This and other model predictions were then tested in real neurons. Overall, the results support our theoretical framework that dendritic plateau potentials bring neuronal cell body into a depolarized state ("UP state"), which lasts 200 - 500 ms, or more. Plateau potentials profoundly change neuronal state -- a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to action potential firing triggered by other afferent inputs. Plateau potentials may allow cortical pyramidal neurons to tune into ongoing network activity and potentially enable synchronized firing, to form active neural ensembles.
Reference:
1 . Gao PP, Graham JW, Zhou WL, Jang J, Angulo SL, Dura-Bernal S, Hines ML, Lytton W, Antic SD (2020) Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. J Neurophysiol [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC); Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s): Glutamate; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Active Dendrites; Calcium dynamics; Axonal Action Potentials; Dendritic Bistability; Detailed Neuronal Models; Membrane Properties; Synaptic Integration;
Implementer(s): Antic, Srdjan [antic at neuron.uchc.edu]; Gao, Peng [peng at uchc.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; NMDA; Glutamate; I A; I K; I h; I K,Ca; Glutamate;
/
plateau-potentials
mod
x86_64
ampa.mod *
ca.mod *
Ca_HVA.mod *
Ca_LVAst.mod *
Cad.mod *
CaDynamics_E2.mod *
CaT.mod *
epsp.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
Ih.mod *
IL.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
kadist.mod *
kaprox.mod *
kBK.mod *
kv.mod *
na.mod
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
NMDA.mod *
NMDAeee.mod
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
SKv3_1.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997
: modified the q10 value on Oct 24, 2017
: the original value q10 = 5 can cause big problem when temperature is 34.
: q10 is lowered to 1 to reduce temperature sensitivity.


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(mS) = (millisiemens)

}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
        dt (ms)
	v (mV)
        ek = -90 (mV)              : must be explicitely def. in hoc
	celsius = 24	(degC)
	gkabar=.008 (mho/cm2)
        vhalfn=-1   (mV)
        vhalfl=-56   (mV)
        a0l=0.05      (/ms)
        a0n=.1    (/ms)
        zetan=-1.8    (1)
        zetal=3    (1)
        gmn=0.39   (1)
        gml=1   (1)
	lmin=2  (ms)
	nmin=0.1  (ms)
	pw=-1    (1)
	tq=-40 (mV)
	qq=5  (mV)
	q10= 2.3
	: 1 : 5   the orginal q10 value is 5, changed it to 1 on Oct 24, 2017
	: change to 2.3 on Dec 8, 2017 by Penny
	qtl=1
        nscale=1
        lscale=1
}


NEURON {
	SUFFIX kad
	USEION k READ ek WRITE ik
        RANGE gkabar,gka,ik
        RANGE ninf,linf,taul,taun
        GLOBAL lmin,nscale,lscale
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf
        taul   (ms)
        taun   (ms)
        gka    (mho/cm2)
        qt
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
        gka = gkabar*n*l
	ik = gka*(v-ek)
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)
}

DERIVATIVE states {
        rates(v)
        n' = (ninf-n)/taun
        l' = (linf-l)/taul
}

FUNCTION alpn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4 (degC/mV)/(8.315*(273.16+celsius)))
}

FUNCTION betn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4 (degC/mV)/(8.315*(273.16+celsius)))
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4 (degC/mV)/(8.315*(273.16+celsius)))
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4 (degC/mV)/(8.315*(273.16+celsius)))
}
LOCAL facn,facl

:if state_borgka is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer.  This is because
: only BREAKPOINT sets up the correct pointers to range variables.
:PROCEDURE states() {     : exact when v held constant; integrates over dt step
:        rates(v)
:        n = n + facn*(ninf - n)
:        l = l + facl*(linf - l)
:        VERBATIM
:        return 0;
:        ENDVERBATIM
:}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10 (degC))
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
        taun = taun/nscale
	if (taun<nmin) {taun=nmin}
        facn = (1 - exp(-dt/taun))
        a = alpl(v)
        linf = 1/(1+ a)
	taul = 0.26(ms/mV)*(v+50)/qtl
        taul = taul/lscale
	if (taul<lmin/qtl) {taul=lmin/qtl}
        facl = (1 - exp(-dt/taul))
}

Loading data, please wait...