Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Real_Cell_Cl_HCO3_1GDP_Var-Cl-pGABA_tauHCO3__Fig6u7
cldif_CA3.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
Cell1_Cl_HCO3_VDPas.hoc *
Cell1_Cl_wo-HCO3_VDPas.hoc *
Do-not_use-Single_GDP_nGABA-302_VDpas_Div_pGABA_0_Div_Cl.hoc
GDP_Cl_HCO3_All_short.ses *
Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-0_nGABA-302_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-0_nGABA-302_Div_Cl .hoc
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div_Cl .hoc
Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-0_nGABA-302_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
Single_GDP_gGABA789_VDpas_pGABA-018_nGABA-395_Div_Cl_4xtauHCO3.hoc
Single_GDP_gGABA789_VDpas_pGABA-018_nGABA-395_Div_Cl_Div_tauHCO3.hoc
Single_GDP_gGABA789_VDpas_pGABA-044_nGABA-523_Div_Cl_4xtauHCO3.hoc
Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-000_nGABA-302_Div_Cl.hoc
Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-0_nGABA-302_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-10min_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-0_nGABA-302_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-1s_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-0_nGABA-302_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-018_nGABA-395_Div_Cl.hoc
start_Single_GDP_gGABA789_tauHCO3-5ms_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
start_Single_GDP_gGABA789_VDpas_pGABA-018_nGABA-395_Div_Cl_4xtauHCO3.hoc
start_Single_GDP_gGABA789_VDpas_pGABA-018_nGABA-395_Div_Cl_Div_tauHCO3.hoc
start_Single_GDP_gGABA789_VDpas_pGABA-044_nGABA-523_Div_Cl_4xtauHCO3.hoc
start_Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-000_nGABA-302_Div_Cl .hoc
start_Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-018_nGABA-395_Div_Cl .hoc
start_Single_GDP_gGABA789_wo-HCO3_VDpas_pGABA-044_nGABA-523_Div_Cl.hoc
                            
COMMENT

A voltage dependent passive conductance

This passive conductance encompass the experimentally determined voltage dependency of immature hippocampal CA3 neurons
The voltage dependenvy of the resistance was fitted with a Bolzmann function of the expression

g = (gmax/(1+exp(Em-E50)/slope))+gmin) * f

mit gmax = 2300 microsiemens
    gmin = 760 microsimens
    E50 = -36 mV (=Voltage at Halfmaximal Resistance)
    Em = Membrane potential
    slope = -6 
   
    f = Faktor to normalize rel conductance (siemens/cm2) to total input resistance values

ENDCOMMENT

NEURON {
	SUFFIX VDpas

	NONSPECIFIC_CURRENT i
	
        RANGE i, e, e50, g, gmin, gmax, s, f 
	
}

UNITS {
   (S) = (siemens)
   (mV) = (millivolt)
   (mA) = (milliamp)
}

PARAMETER {
      
	gmax = 0.002800 (S/cm2)
        gmin = 0.000660 (S/cm2)
        e50 = -31 (mV)
        s = -6
        f = 0.051 
        e = -60  :reversal potential of passive current
}

ASSIGNED {
	v	(mV)		: membrane potential
	i	(nA)		: total current generated by this mechanism
	g 	(uS)		: total conductance
}


BREAKPOINT {
          
        g = f*(gmax/(1+exp((v-e50)/s))+gmin)
        
	i = g * (v-e)
}



Loading data, please wait...