ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/256140.

Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)

 Download zip file 
Help downloading and running models
Accession:256140
"Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. ..."
Reference:
1 . Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A (2019) Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 15:e1006298 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell; Vestibular neuron; Abstract integrate-and-fire leaky neuron;
Channel(s): I K; I Na,t; I L high threshold; I M;
Gap Junctions:
Receptor(s): AMPA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: EDLUT; NEURON; MATLAB;
Model Concept(s): Activity Patterns; Sleep; Long-term Synaptic Plasticity; Vestibular;
Implementer(s): Luque, Niceto R. [nluque at ugr.es];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell; AMPA; Gaba; I Na,t; I L high threshold; I K; I M;
/
LuqueEtAl2019
EDLUT
Articulo purkinje
CASE_A
src
neuron_model
BufferedState.cpp *
EgidioGranuleCell_TimeDriven.cpp *
EgidioGranuleCell_TimeDriven_GPU.cu *
EventDrivenNeuronModel.cpp *
LIFTimeDrivenModel_1_2.cpp *
LIFTimeDrivenModel_1_2_GPU.cu *
LIFTimeDrivenModel_1_4.cpp *
LIFTimeDrivenModel_1_4_GPU.cu *
NeuronModel.cpp *
NeuronModelTable.cpp *
NeuronState.cpp *
SRMState.cpp *
SRMTableBasedModel.cpp *
SRMTimeDrivenModel.cpp *
TableBasedModel.cpp *
TableBasedModelHF.cpp *
TimeDrivenNeuronModel.cpp *
TimeDrivenNeuronModel_GPU.cu *
TimeDrivenPurkinjeCell.cpp *
Vanderpol.cpp *
VectorBufferedState.cpp *
VectorNeuronState.cpp *
VectorNeuronState_GPU.cpp *
VectorSRMState.cpp *
                            
/***************************************************************************
 *                           SRMTableBasedModel.cpp                        *
 *                           -------------------                           *
 * copyright            : (C) 2010 by Jesus Garrido                        *
 * email                : jgarrido@atc.ugr.es                              *
 ***************************************************************************/

/***************************************************************************
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 3 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 ***************************************************************************/

#include "../../include/neuron_model/SRMTableBasedModel.h"
#include "../../include/neuron_model/NeuronModelTable.h"
#include "../../include/neuron_model/VectorSRMState.h"

#include "../../include/spike/InternalSpike.h"
#include "../../include/spike/Neuron.h"

#include "../../include/simulation/Utils.h"


void SRMTableBasedModel::LoadNeuronModel(string ConfigFile) throw (EDLUTFileException){
	FILE *fh;
	long Currentline = 0L;
	fh=fopen(ConfigFile.c_str(),"rt");
	if(fh){
		Currentline=1L;
		skip_comments(fh,Currentline);
		if(fscanf(fh,"%i",&this->NumStateVar)==1){
			unsigned int nv;

			// Initialize all vectors.
			this->StateVarTable = (NeuronModelTable **) new NeuronModelTable * [this->NumStateVar];
			this->StateVarOrder = (unsigned int *) new unsigned int [this->NumStateVar];

			// Auxiliary table index
			unsigned int * TablesIndex = (unsigned int *) new unsigned int [this->NumStateVar];

			skip_comments(fh,Currentline);
			for(nv=0;nv<this->NumStateVar;nv++){
				if(fscanf(fh,"%i",&TablesIndex[nv])!=1){
					throw EDLUTFileException(13,41,3,1,Currentline);
				}
			}

			skip_comments(fh,Currentline);

			float InitValue;
			InitValues=new float[NumStateVar+3]();

			// Create a new initial state
			this->InitialState = (VectorSRMState *) new VectorSRMState(this->NumStateVar+3,0, false);
//			this->InitialState->SetLastUpdateTime(0);
//			this->InitialState->SetNextPredictedSpikeTime(NO_SPIKE_PREDICTED);
//			this->InitialState->SetStateVariableAt(0,0);

			for(nv=0;nv<this->NumStateVar;nv++){
				if(fscanf(fh,"%f",&InitValue)!=1){
					throw EDLUTFileException(13,42,3,1,Currentline);
				} else {
					InitValues[nv+1]=InitValue;
//					this->InitialState->SetStateVariableAt(nv+1,InitValue);
				}
			}


			skip_comments(fh,Currentline);
			unsigned int FiringIndex;
			if(fscanf(fh,"%i",&FiringIndex)==1){
				skip_comments(fh,Currentline);
				if(fscanf(fh,"%i",&this->NumSynapticVar)==1){
					skip_comments(fh,Currentline);

					this->SynapticVar = (unsigned int *) new unsigned int [this->NumSynapticVar];
					for(nv=0;nv<this->NumSynapticVar;nv++){
						if(fscanf(fh,"%i",&this->SynapticVar[nv])!=1){
							throw EDLUTFileException(13,40,3,1,Currentline);
						}
					}


					skip_comments(fh,Currentline);
					if(fscanf(fh,"%i",&this->LastSpikeVar)!=1){
						throw EDLUTFileException(13,46,3,1,Currentline);
					}

					skip_comments(fh,Currentline);
					if(fscanf(fh,"%i",&this->SeedVar)!=1){
						throw EDLUTFileException(13,47,3,1,Currentline);
					}

					skip_comments(fh,Currentline);
					if(fscanf(fh,"%i",&this->NumTables)==1){
						unsigned int nt;
						int tdeptables[MAXSTATEVARS];
						int tstatevarpos,ntstatevarpos;

						this->Tables = (NeuronModelTable *) new NeuronModelTable [this->NumTables];

						// Update table links
						for(nv=0;nv<this->NumStateVar;nv++){
							this->StateVarTable[nv] = this->Tables+TablesIndex[nv];
						}
						this->FiringTable = this->Tables+FiringIndex;

						for(nt=0;nt<this->NumTables;nt++){
							this->Tables[nt].LoadTableDescription(fh, Currentline);
						}

						this->NumTimeDependentStateVar = 0;
						for(nt=0;nt<this->NumStateVar;nt++){
							for(nv=0;nv<this->StateVarTable[nt]->GetDimensionNumber() && this->StateVarTable[nt]->GetDimensionAt(nv)->statevar != 0;nv++);
							if(nv<this->StateVarTable[nt]->GetDimensionNumber()){
								tdeptables[nt]=1;
								this->NumTimeDependentStateVar++;
							}else{
								tdeptables[nt]=0;
							}
						}

						tstatevarpos=0;
						ntstatevarpos=this->NumTimeDependentStateVar; // we place non-t-depentent variables in the end, so that they are evaluated afterwards
						for(nt=0;nt<this->NumStateVar;nt++){
							this->StateVarOrder[(tdeptables[nt])?tstatevarpos++:ntstatevarpos++]=nt;
						}
					}else{
						throw EDLUTFileException(13,37,3,1,Currentline);
					}
				}else{
					throw EDLUTFileException(13,36,3,1,Currentline);
				}
			}else{
				throw EDLUTFileException(13,35,3,1,Currentline);
			}
		}else{
			throw EDLUTFileException(13,34,3,1,Currentline);
		}
	}else{
		throw EDLUTFileException(13,25,13,0,Currentline);
	}
}

void SRMTableBasedModel::LoadNeuronModel() throw (EDLUTFileException){

	this->LoadNeuronModel(this->GetModelID()+".cfg");

	this->LoadTables(this->GetModelID()+".dat");

}

void SRMTableBasedModel::UpdateState(int index, VectorNeuronState * State, double CurrentTime){
	double AuxTime = State->GetLastUpdateTime(index);

	VectorSRMState * StateAux = (VectorSRMState *) State;

	StateAux->AddElapsedTime(index, CurrentTime-AuxTime);

	TableBasedModel::UpdateState(index, State, CurrentTime);
}

void SRMTableBasedModel::SynapsisEffect(int index, Interconnection * InputConnection){
	this->GetVectorNeuronState()->IncrementStateVariableAtCPU(index,this->SynapticVar[InputConnection->GetType()]+1,InputConnection->GetWeight()*exp(1.0));
}

double SRMTableBasedModel::NextFiringPrediction(int index, VectorNeuronState * State){
	State->SetStateVariableAt(index,this->LastSpikeVar+1,((VectorSRMState *) State)->GetLastSpikeTime(index));
	State->SetStateVariableAt(index,this->SeedVar+1,rand()%10);
	return this->FiringTable->TableAccess(index,State);
}

double SRMTableBasedModel::EndRefractoryPeriod(int index, VectorNeuronState * State){
	return 0.0;
}

SRMTableBasedModel::SRMTableBasedModel(string NeuronTypeID, string NeuronModelID): TableBasedModel(NeuronTypeID, NeuronModelID){

}

SRMTableBasedModel::~SRMTableBasedModel(){

}

VectorNeuronState * SRMTableBasedModel::InitializeState(){
	//return (VectorSRMState *) new VectorSRMState(*((VectorSRMState *) this->InitialState));
	return InitialState;
}

InternalSpike * SRMTableBasedModel::GenerateNextSpike(InternalSpike *  OutputSpike){

	Neuron * SourceCell = OutputSpike->GetSource();

	int SourceIndex=SourceCell->GetIndex_VectorNeuronState();

	VectorNeuronState * CurrentState = SourceCell->GetVectorNeuronState();

	InternalSpike * NextSpike = 0;

	this->UpdateState(SourceIndex,(VectorSRMState *)CurrentState,OutputSpike->GetTime());

	double PredictedSpike = this->NextFiringPrediction(SourceIndex,(VectorSRMState *)CurrentState);

	if (PredictedSpike!=NO_SPIKE_PREDICTED){
		PredictedSpike += CurrentState->GetLastUpdateTime(SourceIndex);

		NextSpike = new InternalSpike(PredictedSpike,SourceCell);
	}

	SourceCell->GetVectorNeuronState()->SetNextPredictedSpikeTime(SourceIndex,PredictedSpike);

	return NextSpike;
}

void SRMTableBasedModel::InitializeStates(int N_neurons, int OpenMPQueueIndex){
	InitialState->InitializeStates(N_neurons, InitValues);
}

Loading data, please wait...