Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)

 Download zip file 
Help downloading and running models
Accession:260971
"Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity."
Reference:
1 . Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT (2020) A unified computational model for cortical post-synaptic plasticity. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex spiking regular (RS) neuron;
Channel(s): I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate; Norephinephrine; Acetylcholine;
Simulation Environment: NEURON; NeuroRD;
Model Concept(s): Long-term Synaptic Plasticity;
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no];
Search NeuronDB for information about:  I Calcium; Acetylcholine; Norephinephrine; Glutamate;
/
synaptic
L23PC
L23_PC_cADpyr229_3
hoc_recordings
mechanisms
morphology
python_recordings
synapses
README *
biophysics.hoc *
cellinfo.json *
CHANGELOG *
constants.hoc *
creategui.hoc *
createsimulation.hoc *
current_amps.dat *
init.hoc *
LICENSE *
morphology.hoc *
mosinit.hoc *
ringplot.hoc *
run.py *
run_hoc.sh *
run_py.sh *
run_RmpRiTau.py *
run_RmpRiTau_py.sh *
template.hoc
VERSION *
                            
/*                                                                               
 * @file ringplot.hoc                                                           
 * @brief Horizontally scrolling plot                                
 * @author M. Hines @ Yale, Werner Van Geit @ BBP                                                 
 * @date 2015                                                                    
*/        

load_file("nrngui.hoc")

begintemplate RingPlot
public g, clipped_voltage
public view_count, fastflush, flush, cleanup
objref g, clipped_voltage, clipped_time, voltage, time, max_vec


/** Constructor */
proc init() {
    // Generate graph
    g = new Graph(0)

    // Horizontal width of the plot (in ms)
    clip_size = 3000.0

    // Record voltage
    voltage = new Vector(10000)
    voltage.record(&v(.5))

    // Record time
    time = new Vector(10000)
    time.record(&t)

    // Vector that will contain the clipped data
    clipped_voltage = new Vector()
    clipped_time = new Vector()

    // Set up location and size of window
    g.view(0, -90, 3000, 120, 50, 650, 1007.04, 450)
}

/** View count of the graph */
func view_count() {
    return g.view_count() 
}

/** Fast flush the plot */
func fastflush() {
    update()
    return g.flush()
}

/** Flush the plot */
func flush() {
  update()
  return g.flush()
}

/** Update the plot */
proc update() {
    // Set clipping region (in ms)
    clip_size = 3000.0
  
    // Time at right side of clipping region
    right_t = t

    // Time at left side of clipping region
    // Wait until time reaches clip_size to start scrolling
    if (t >= clip_size) {
        left_t = t - clip_size
    } else {
        left_t = 0.0
    }

    // Calculate clipped vectors
    clipped_voltage.copy(voltage, 0, left_t/dt, right_t/dt-1)
    clipped_time.copy(time, 0, left_t/dt, right_t/dt-1)
    clipped_time.sub(left_t)

    // Erase previous plot
    g.erase()
    // Plot clipped vectors
    clipped_voltage.plot(g, clipped_time)
}

/** Clean up the plot */
proc cleanup() {

    // Vector that will contain the clipped data
    clipped_voltage = new Vector()
    clipped_time = new Vector()
    
}

endtemplate RingPlot

Loading data, please wait...